A Canonical Trace Associated with Certain Spectral Triples
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the abstract pseudodifferential setup of Connes and Moscovici, we prove a general formula for the discrepancies of zeta-regularised traces associated with certain spectral triples, and we introduce a canonical trace on operators, whose order lies outside (minus) the dimension spectrum of the spectral triple.
Keywords: spectral triples; zeta regularisation; noncommutative residue; discrepancies.
@article{SIGMA_2010_6_a76,
     author = {Sylvie Paycha},
     title = {A~Canonical {Trace} {Associated} with {Certain} {Spectral} {Triples}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a76/}
}
TY  - JOUR
AU  - Sylvie Paycha
TI  - A Canonical Trace Associated with Certain Spectral Triples
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a76/
LA  - en
ID  - SIGMA_2010_6_a76
ER  - 
%0 Journal Article
%A Sylvie Paycha
%T A Canonical Trace Associated with Certain Spectral Triples
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a76/
%G en
%F SIGMA_2010_6_a76
Sylvie Paycha. A Canonical Trace Associated with Certain Spectral Triples. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a76/

[1] Berline N., Getzler E., Vergne M., Heat kernels and Dirac operators, Springer-Verlag, Berlin, 2004 | MR | Zbl

[2] Connes A., Noncommutative geometry, Academic Press, San Diego, CA, 1994 | MR | Zbl

[3] Cardona A., Ducourtioux C., Magnot J. P., Paycha S., “Weighted traces on algebras of pseudo-differential operators and geometry on loop groups”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 5 (2002), 503–540, arXiv: math.OA/0001117 | DOI | MR | Zbl

[4] Connes A., Moscovici H., “The local index formula in noncommutative geometry”, Geom. Funct. Anal., 5 (1995), 174–243 | DOI | MR | Zbl

[5] Dunford N., Schwartz J. T., Linear operators. Part III. Spectral operators, John Wiley Sons, Inc., New York, 1988 | MR

[6] Higson N., “The residue index theorem of Connes and Moscovici”, Surveys in Noncommutative Geometry, Clay Math. Proc., 6, Amer. Math. Soc., Providence, RI, 2006, 71–126 | MR | Zbl

[7] Hörmander L., The analysis of linear partial differential operators, v. I, Grundlehren der Mathematischen Wissenschaften, 256, Distribution theory and Fourier analysis, Springer-Verlag, Berlin, 1983 | MR | Zbl

[8] Kassel Ch., “Le résidu non commutatif (d'après M. Wodzicki)”, Astérisque, 177–178, no. exp. 708, 1989, 199–229 | MR | Zbl

[9] Kontsevich M., Vishik S., “Geometry of determinants of elliptic operators”, Functional Analysis on the Eve of the 21st Century (New Brunswick, NJ, 1993), v. 1, Progr. Math., 131, Birkhäuser Boston, Boston, MA, 1995, 173–197, arXiv: ; Kontsevich M., Vishik S., Determinants of elliptic pseudo-differential operators, arXiv: hep-th/9406140hep-th/9404046 | MR | Zbl

[10] Lesch M., “On the noncommutative residue for pseudodifferential operators with log-polyhomogeneous symbols”, Ann. Global Anal. Geom., 17 (1998), 151–187, arXiv: dg-ga/9708010 | DOI | MR

[11] Melrose R., Nistor V., Homology of pseudo-differential operators. I. Manifolds with boundary, arXiv: funct-an/9606005

[12] Maniccia L., Schrohe E., Seiler J., “Uniqueness of the Kontsevich–Vishik trace”, Proc. Amer. Math. Soc., 136 (2008), 747–752, arXiv: math.FA/0702250 | DOI | MR | Zbl

[13] Okikiolu K., “The Campbell–Hausdorff theorem for elliptic operators and a related trace formula”, Duke Math. J., 79 (1995), 687–722 | DOI | MR | Zbl

[14] Paycha S., Regularised integrals, sums and traces; an analytic point of view, Monograph in preparation

[15] Paycha S., “Noncommutative Taylor expansions and second quantised regularised traces”, Combinatorics and Physics, Clay Math. Proc. (to appear)

[16] Paycha S., Scott S., “A Laurent expansion for regularised integrals of holomorphic symbols”, Geom. Funct. Anal., 17 (2007), 491–536, arXiv: math.AP/0506211 | DOI | MR | Zbl

[17] Seeley R. T., “Complex powers of an elliptic operator”, Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966), Amer. Math. Soc., Providence, R.I., 1967, 288–307 | MR

[18] Shubin M. A., Pseudodifferential operators and spectral theory, 2nd ed., Springer-Verlag, Berlin, 2001 | MR

[19] Taylor M. E., Pseudodifferential operators, Princeton Mathematical Series, 34, Princeton University Press, Princeton, N.J., 1981 | MR | Zbl

[20] Trèves F., Introduction to pseudodifferential and Fourier integral operators, v. 1, The University Series in Mathematics, Pseudodifferential operators, Plenum Press, New York, London, 1980 | MR | Zbl

[21] Varilly J. C., An introduction to noncommutative geometry, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2006 | MR | Zbl

[22] Wodzicki M., Spectral asymmetry and noncommutative residue, PhD Thesis, Steklov Mathematics Institute, Moscow, 1984 (in Russian)

[23] Wodzicki M., “Noncommutative residue. I. Fundamentals”, $K$-Theory, Arithmetic and Geometry (Moscow, 1984–1986), Lecture Notes in Math., 1289, Springer, Berlin, 1987, 320–399 | MR