@article{SIGMA_2010_6_a75,
author = {Vladimir V. Kisil},
title = {Erlangen {Program} at {Large-1:} {Geometry} of {Invariants}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a75/}
}
Vladimir V. Kisil. Erlangen Program at Large-1: Geometry of Invariants. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a75/
[1] Arveson W., An invitation to $C^*$-algebras, Graduate Texts in Mathematics, 39, Springer-Verlag, New York, Heidelberg, 1976 | MR | Zbl
[2] Baird P., Wood J. C., “Harmonic morphisms from Minkowski space and hyperbolic numbers”, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 52:100 (2009), 195–209 | MR | Zbl
[3] Barker W., Howe R., Continuous symmetry. From Euclid to Klein, American Mathematical Society, Providence, RI, 2007 | MR | Zbl
[4] Bauer C., Frink A., Kreckel R., Vollinga J., GiNaC is Not a CAS, http://www.ginac.de/
[5] Beardon A. F., The geometry of discrete groups, Graduate Texts in Mathematics, 91, Springer-Verlag, New York, 1995 | MR
[6] Beardon A. F., Algebra and geometry, Cambridge University Press, Cambridge, 2005 | MR | Zbl
[7] Bekkara E., Frances C., Zeghib A., “On lightlike geometry: isometric actions, and rigidity aspects”, C. R. Math. Acad. Sci. Paris, 343 (2006), 317–321 | DOI | MR | Zbl
[8] Benz W., Classical geometries in modern contexts. Geometry of real inner product spaces, 2nd ed., Birkhäuser Verlag, Basel, 2007 | MR
[9] Berger M., Geometry, v. II, Springer-Verlag, Berlin, 1987
[10] Boccaletti D., Catoni F., Cannata R., Catoni V., Nichelatti E., Zampetti P., The mathematics of Minkowski space-time and an introduction to commutative hypercomplex numbers, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2008 | MR | Zbl
[11] Catoni F., Cannata R., Nichelatti E., “The parabolic analytic functions and the derivative of real functions”, Adv. Appl. Clifford Algebr., 14 (2004), 185–190 | DOI | MR | Zbl
[12] Catoni F., Cannata R., Catoni V., Zampetti P., “$N$-dimensional geometries generated by hypercomplex numbers”, Adv. Appl. Clifford Algebr., 15 (2005), 1–25 | DOI | MR | Zbl
[13] Cerejeiras P., Kähler U., Sommen F., “Parabolic Dirac operators and the Navier–Stokes equations over time-varying domains”, Math. Methods Appl. Sci., 28 (2005), 1715–1724 | DOI | MR | Zbl
[14] Chern S.-S., “Finsler geometry is just Riemannian geometry without the quadratic restriction”, Notices Amer. Math. Soc., 43 (1996), 959–963 | MR | Zbl
[15] Cnops J., Hurwitz pairs and applications of Möbius transformations, Habilitation Dissertation, University of Gent, 1994
[16] Cnops J., An introduction to Dirac operators on manifolds, Progress in Mathematical Physics, 24, Birkhäuser Boston, Inc., Boston, MA, 2002 | MR | Zbl
[17] Coxeter H. S. M., Greitzer S. L., Geometry revisited, Random House, New York, 1967 | Zbl
[18] Davis M., Applied nonstandard analysis, John Wiley Sons, New York, 1977 | MR
[19] Eelbode D., Sommen F., “Taylor series on the hyperbolic unit ball”, Bull. Belg. Math. Soc. Simon Stevin, 11 (2004), 719–737 | MR | Zbl
[20] Eelbode D., Sommen F., “The fundamental solution of the hyperbolic Dirac operator on $\mathbf R^{1,m}$: a new approach”, Bull. Belg. Math. Soc. Simon Stevin, 12 (2005), 23–37 | MR | Zbl
[21] Fjelstad P., Gal S. G., “Two-dimensional geometries, topologies, trigonometries and physics generated by complex-type numbers”, Adv. Appl. Clifford Algebr., 11 (2001), 81–107 | DOI | MR | Zbl
[22] Garas'ko G. I., Elements of Finsler geometry for physicists, TETRU, Moscow, 2009 available at (in Russian) http://hypercomplex.xpsweb.com/articles/487/ru/pdf/00-gbook.pdf
[23] Gromov N. A., Contractions and analytic extensions of classical groups. Unified approach, Akad. Nauk SSSR Ural. Otdel. Komi Nauchn. Tsentr, Syktyvkar, 1990 (in Russian) | MR | Zbl
[24] Gromov N. A., Kuratov V. V., “Noncommutative space-time models”, Czechoslovak J. Phys., 55 (2005), 1421–1426, arXiv: hep-th/0507009 | DOI | MR
[25] Herranz F. J., Santander M., “Conformal compactification of spacetimes”, J. Phys. A: Math. Gen., 35 (2002), 6619–6629, arXiv: math-ph/0110019 | DOI | MR | Zbl
[26] Herranz F. J., Santander M., “Conformal symmetries of spacetimes”, J. Phys. A: Math. Gen., 35 (2002), 6601–6618, arXiv: math-ph/0110019 | DOI | MR | Zbl
[27] Howe R., Tan E.-C., Non-abelian harmonic analysis. Applications of $SL(2,\mathbf R)$, Springer-Verlag, New York, 1992 | MR
[28] Khrennikov A. Yu., “Hyperbolic quantum mechanics”, Dokl. Akad. Nauk, 402 (2005), 170–172 (in Russian) | MR
[29] Khrennikov A., Segre G., “Hyperbolic quantization”, Quantum Probability and Infinite Dimensional Analysis, QP-PQ: Quantum Probab. White Noise Anal., 20, World Sci. Publ., Hackensack, NJ, 2007, 282–287 | MR | Zbl
[30] Kirillov A. A., Elements of the theory of representations, Grundlehren der Mathematischen Wissenschaften, 220, Springer-Verlag, Berlin, New York, 1976 | MR | Zbl
[31] Kirillov A. A., A tale of two fractals, see http://www.math.upenn.edu/textasciitilde kirillov/MATH480-F07/tf.pdf
[32] Kisil A. V., “Isometric action of $\mathrm{SL}_2(\mathbf R)$ on homogeneous spaces”, Adv. Appl. Clifford Algebr., 20 (2010), 299–312, arXiv: 0810.0368 | DOI | Zbl
[33] Kisil V. V., “Construction of integral representations for spaces of analytic functions”, Dokl. Akad. Nauk, 350 (1996), 446–448 (Russian) | MR | Zbl
[34] Kisil V. V., “Möbius transformations and monogenic functional calculus”, Electron. Res. Announc. Amer. Math. Soc., 2 (1996), 26–33 | DOI | MR | Zbl
[35] Kisil V. V., “Towards to analysis in $\mathbf R^{pq}$”, Proceedings of Symposium Analytical and Numerical Methods in Quaternionic and Clifford Analysis (Seiffen, Germany, 1996), eds. W. Sprößig and K. Gürlebeck, TU Bergakademie Freiberg, Freiberg, 1996, 95–100
[36] Kisil V. V., “How many essentially different function theories exist?”, Clifford Algebras and Their Application in mathematical physics (Aachen, 1996), Fund. Theories Phys., 94, Kluwer Acad. Publ., Dordrecht, 1998, 175–184 | MR | Zbl
[37] Kisil V. V., “Analysis in $\mathbf R^{1,1}$ or the principal function theory”, Complex Variables Theory Appl., 40 (1999), 93–118, arXiv: funct-an/9712003 | DOI | MR | Zbl
[38] Kisil V. V., “Relative convolutions. I. Properties and applications”, Adv. Math., 147 (1999), 35–73, arXiv: funct-an/9410001 | DOI | MR | Zbl
[39] Kisil V. V., “Two approaches to non-commutative geometry”, Complex Methods for Partial Differential Equations (Ankara, 1998), Int. Soc. Anal. Appl. Comput., 6, Kluwer Acad. Publ., Dordrecht, 1999, 215–244, arXiv: funct-an/9703001 | MR | Zbl
[40] Kisil V. V., “Wavelets in Banach spaces”, Acta Appl. Math., 59 (1999), 79–109, arXiv: math.FA/9807141 | DOI | MR | Zbl
[41] Kisil V. V., Spaces of analytical functions and wavelets – Lecture notes, 2000–2002, arXiv: math.CV/0204018 | Zbl
[42] Kisil V. V., “Meeting Descartes and Klein somewhere in a noncommutative space”, Highlights of Mathematical Physics (London, 2000), Amer. Math. Soc., Providence, RI, 2002, 165–189, arXiv: math-ph/0112059 | MR | Zbl
[43] Kisil V. V., “Spectrum as the support of functional calculus”, Functional Analysis and Its Applications, North-Holland Math. Stud., 197, Elsevier, Amsterdam, 2004, 133–141, arXiv: math.FA/0208249 | MR | Zbl
[44] Kisil V. V., “An example of Clifford algebras calculations with GiNaC”, Adv. Appl. Clifford Algebr., 15 (2005), 239–269, arXiv: cs.MS/0410044 | DOI | MR | Zbl
[45] Kisil V. V., “Starting with the group $\rm{SL}_2(\bf R)$”, Notices Amer. Math. Soc., 54 (2007), 1458–1465, arXiv: math.GM/0607387 | MR | Zbl
[46] Kisil V. V., “Fillmore–Springer–Cnops construction implemented in GiNaC”, Adv. Appl. Clifford Algebr., 17 (2007), 59–70, arXiv: cs.MS/0512073 | DOI | MR | Zbl
[47] Kisil V. V., Erlangen program at large-2 1/2: induced representations and hypercomplex numbers, arXiv: 0909.4464
[48] Kisil V. V., Erlangen program at large-2: inventing a wheel. The parabolic one, Proc. Inst. Math. of the NAS of Ukraine (to appear) , arXiv: 0707.4024
[49] Kisil V. V., Erlangen programme at large 3.1: hypercomplex representations of the Heisenberg group and mechanics, arXiv: 1005.5057
[50] Kisil V. V., Erlangen program at large: outline, arXiv: 1006.2115
[51] Kisil V. V., Biswas D., “Elliptic, parabolic and hyperbolic analytic function theory-0: geometry of domains”, Complex Analysis and Free Boundary Flows, Proc. Inst. Math. of the NAS of Ukraine, 1, no. 3, 2004, 100–118, arXiv: math.CV/0410399 | MR | Zbl
[52] Konovenko N., “Projective structures and algebras of their differential invariants”, Acta Appl. Math., 109 (2010), 87–99 | DOI | MR | Zbl
[53] Konovenko N. G., Lychagin V. V., “Differential invariants of nonstandard projective structures”, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, 11 (2008), 10–13 (in Russian) | MR | Zbl
[54] Kurucz A., Wolter F., Zakharyaschev M., “Modal logics for metric spaces: open problems”, We Will Show Them: Essays in Honour of Dov Gabbay, v. 2, eds. S. Artemov, H. Barringer, A. S. d'Avila Garcez, L. C. Lamb and J. Woods, College Publications, 2005, 193–208
[55] Lang S., $\rm{SL}_2(\bf R)$, Graduate Texts in Mathematics, 105, Springer-Verlag, New York, 1985 | MR | Zbl
[56] Lavrent'ev M. A., Shabat B. V., Problems of hydrodynamics and their mathematical models, 2nd ed., Nauka, Moscow, 1977 (in Russian) | MR
[57] McRae A. S., “Clifford algebras and possible kinematics”, SIGMA, 2007, 079, 29 pp., arXiv: 0707.2869 | DOI | MR | Zbl
[58] Mirman R., “Quantum field theory, conformal group theory, conformal field theory”, Mathematical and Conceptual Foundations, Physical and Geometrical Applications, Nova Science Publishers, Inc., Huntington, NY, 2001 | MR
[59] Motter A. E., Rosa M. A. F., “Hyperbolic calculus”, Adv. Appl. Clifford Algebr., 8 (1998), 109–128 | DOI | MR | Zbl
[60] Olver P. J., Classical invariant theory, London Mathematical Society Student Texts, 44, Cambridge University Press, Cambridge, 1999 | MR
[61] Pavlov D. G., “Symmetries and geometric invariants”, Hypercomplex Numbers Geom. Phys., 3:2 (2006), 21–32 (in Russian)
[62] Pimenov R. I., “Unified axiomatics of spaces with maximal movement group”, Litovsk. Mat. Sb., 5 (1965), 457–486 (in Russian) | MR | Zbl
[63] Porteous I. R., Clifford algebras and the classical groups, Cambridge Studies in Advanced Mathematics, 50, Cambridge University Press, Cambridge, 1995 | MR | Zbl
[64] Ramsey N., Noweb – a simple, extensible tool for literate programming, available at http://www.eecs.harvard.edu/~nr/noweb/
[65] Rozenfel'd B. A., Zamakhovskiĭ M. P., Geometry of Lie groups. Symmetric, parabolic, and periodic spaces, Moskovskiĭ Tsentr Nepreryvnogo Matematicheskogo Obrazovaniya, Moscow, 2003 (in Russian) | MR
[66] Segal I. E., Mathematical cosmology and extragalactic astronomy, Pure and Applied Mathematics, 68, Academic Press, New York, 1976 | MR
[67] Sharpe R. W., Differential geometry. Cartan's generalization of Klein's Erlangen program, Graduate Texts in Mathematics, 166, Springer-Verlag, New York, 1997 | MR | Zbl
[68] Taylor M. E., Noncommutative harmonic analysis, Mathematical Surveys and Monographs, 22, American Mathematical Society, Providence, RI, 1986 | MR | Zbl
[69] Uspenskiĭ V. A., What is non-standard analysis?, Nauka, Moscow, 1987 (in Russian) | MR
[70] Vignaux J. C., Durañona y Vedia A., “Sobre la teoría de las funciones de una variable compleja hiperbólica”, Univ. nac. La Plata. Publ. Fac. Ci. fis. mat., 104 (1935), 139–183 (in Spanish) | Zbl
[71] Wildberger N. J., Divine proportions. Rational trigonometry to universal geometry, Wild Egg, Kingsford, 2005 | MR | Zbl
[72] Yaglom I. M., A simple non-Euclidean geometry and its physical basis, Springer-Verlag, New York, 1979 | MR | Zbl
[73] Zejliger D. N., Complex lined geometry. Surfaces and congruency, GTTI, Leningrad, 1934 (in Russian)