@article{SIGMA_2010_6_a74,
author = {Mikhail V. Ioffe},
title = {Supersymmetrical {Separation} of {Variables} in {Two-Dimensional} {Quantum} {Mechanics}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a74/}
}
Mikhail V. Ioffe. Supersymmetrical Separation of Variables in Two-Dimensional Quantum Mechanics. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a74/
[1] Schrödinger E., “A method of determining quantum-mechanical eigenvalues and eigenfunctions”, Proc. Roy. Irish Acad. Sect. A, 46 (1940), 9–16 ; Schrödinger E., “Further studies on solving eigenvalue problems by factorization”, Proc. Roy. Irish Acad. Sect. A, 46 (1940), 183–206 ; Schrödinger E., “The factorization of the hypergeometric equation”, Proc. Roy. Irish Acad. Sect. A, 47 (1941), 53–54 ; Infeld L., Hull T. E., “The factorization method”, Rev. Modern Phys., 23 (1951), 21–68 ; Dabrowska J. W., Khare A., Sukhatme U., “Explicit wavefunctions for shape-invariant potentials by operator techniques”, J. Phys. A: Math. Gen., 21 (1988), L195–L200 | MR | MR | MR | Zbl | DOI | MR | Zbl | DOI | MR
[2] Cooper F., Khare A., Sukhatme U., “Supersymmetry and quantum mechanics”, Phys. Rep., 251 (1995), 267–385, arXiv: ; Junker G., Supersymmetrical methods in quantum and statistical physics, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1996 ; Bagchi B. K., Supersymmetry in quantum and classical mechanics, Chapman Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 116, Chapman Hall/CRC, Boca Raton, FL, 2001 hep-th/9405029 | DOI | MR | MR | Zbl | MR | Zbl
[3] Witten E., “Dynamical breaking of supersymmetry”, Nuclear Phys. B, 185 (1981), 513–554 | DOI
[4] Gendenshtein L. E., “Derivation of exact spectra of the Schrödinger equation by means of SUSY”, JETP Lett., 38 (1983), 356–359
[5] Darboux G., “Sur un proposition relative aux equations lineares”, C. R. Acad. Sci. Paris, 94 (1882), 1456–1459
[6] Andrianov A. A., Borisov N. V., Ioffe M. V., “Quantum systems with identical energy spectra”, JETP Lett., 39 (1984), 93–97
[7] Bagrov V. G., Samsonov B. F., “Darboux transformation, factorization and supersymmetry in one-dimensional quantum mechanics”, Theoret. and Math. Phys., 104 (1995), 1051–1060 | DOI | MR | Zbl
[8] Miller W. Jr., Symmetry and separation of variables, Encyclopedia of Mathematics and its Applications, 4, Addison-Wesley Publishing Co., Reading, Mass., London, Amsterdam, 1977 | MR | Zbl
[9] Eisenhart L. P., “Enumeration of potentials for which one-particle Schrödinger equations are separable”, Phys. Rev., 74 (1948), 87–89 | DOI | MR | Zbl
[10] Calogero F., “Solution of one-dimensional $N$-body problems with quadratic and/or inversely quadratic pair potential”, J. Math. Phys., 12 (1971), 419–436 | DOI | MR
[11] Turbiner A. V., “Quasi-exactly-solvable problems and $\mathrm{sl}(2)$ algebra”, Comm. Math. Phys., 118 (1988), 467–474 ; Ushveridze A. G., “Quasi-exactly solvable models in quantum mechanics”, Soviet J. Particles and Nuclei, 20 (1989), 504–528 | DOI | MR | Zbl | MR
[12] Cannata F., Ioffe M. V., Roychoudhury R., Roy P., “A new class of PT-symmetric Hamiltonians with real spectra”, Phys. Lett. A, 281 (2001), 305–310, arXiv: ; Debergh N., Van Den Bossche B., Samsonov B. F., “Darboux transformations for quasi-exactly solvable Hamiltonians”, Internat. J. Modern Phys. A, 17 (2002), 1577–1587, arXiv: quant-ph/0011089quant-ph/0201105 | DOI | MR | Zbl | DOI | MR | Zbl
[13] Andrianov A. A., Borisov N. V., Ioffe M. V., Eides M. I., “Supersymmetric mechanics: a new look at the equivalence of quantum systems”, Theoret. and Math. Phys., 61 (1984), 965–972 ; Andrianov A. A., Borisov N. V., Eides M. I., Ioffe M. V., “Supersymmetric origin of equivalent quantum systems”, Phys. Lett. A, 109 (1985), 143–148 | DOI | MR | DOI | MR
[14] Andrianov A. A., Ioffe M. V., “Pauli fermions as components of $D=2$ supersymmetrical quantum mechanics”, Phys. Lett. B, 205 (1988), 507–510 | DOI | MR
[15] Ioffe M. V., Neelov A. I., “Pauli equation and the method of supersymmetric factorization”, J. Phys. A: Math. Gen., 36 (2003), 2493–2506, arXiv: hep-th/0302004 | DOI | MR | Zbl
[16] Ioffe M. V., KuruŞ., Negro J., Nieto L. M., “SUSY approach to Pauli Hamiltonians with an axial symmetry”, J. Phys. A: Math. Gen., 39 (2006), 6987–7001, arXiv: hep-th/0603005 | DOI | MR | Zbl
[17] Demircioǧlu B., KuruŞ., Önder M., Verçin A., “Two families of superintegrable and isospectral potentials in two dimensions”, J. Math. Phys., 43 (2002), 2133–2150, arXiv: quant-ph/0201099 | DOI | MR | Zbl
[18] Andrianov A. A., Ioffe M. V., Spiridonov V. P., “Higher-derivative supersymmetry and the Witten index”, Phys. Lett. A, 174 (1993), 273–279, arXiv: ; Andrianov A. A., Ioffe M. V., Cannata F., Dedonder J.-P., “Second order derivative supersymmetry, $q$ deformations and the scattering problem”, Internat. J. Modern Phys. A, 10 (1995), 2683–2702, arXiv: hep-th/9303005hep-th/9404061 | DOI | MR | DOI | MR | Zbl
[19] Andrianov A. A., Ioffe M. V., Nishnianidze D. N., “Polynomial SUSY in quantum mechanics and second derivative Darboux transformations”, Phys. Lett. A, 201 (1995), 103–110, arXiv: ; Andrianov A. A., Ioffe M. V., Nishnianidze D. N., “Polynomial supersymmetry and dynamical symmetries in quantum mechanics”, Theoret. and Math. Phys., 104 (1995), 1129–1140 ; Cannata F., Ioffe M. V., Nishnianidze D. N., “Double shape invariance of the two-dimensional singular Morse model”, Phys. Lett. A, 340 (2005), 31–36, arXiv: hep-th/9404120hep-th/0504077 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[20] Ioffe M. V., Valinevich P. A., “New two-dimensional quantum models partially solvable by the supersymmetrical approach”, J. Phys. A: Math. Gen., 38 (2005), 2497–2510, arXiv: ; Ioffe M. V., Mateos Guilarte J., Valinevich P. A., “Two-dimensional supersymmetry: from SUSY quantum mechanics to integrable classical models”, Ann. Physics, 321 (2006), 2552–2565, arXiv: hep-th/0409153hep-th/0603006 | DOI | MR | Zbl | DOI | MR | Zbl
[21] Ioffe M. V., Negro J., Nieto L. M., Nishnianidze D. N., “New two-dimensional integrable quantum models from SUSY intertwining”, J. Phys. A: Math. Gen., 39 (2006), 9297–9308 | DOI | MR | Zbl
[22] Cannata F., Ioffe M. V., Nishnianidze D. N., “New methods for the two-dimensional Schrödinger equation: SUSY-separation of variables and shape invariance”, J. Phys. A: Math. Gen., 35 (2002), 1389–1404, arXiv: hep-th/0201080 | DOI | MR | Zbl
[23] Ioffe M. V., “A SUSY approach for investigation of two-dimensional quantum mechanical systems”, J. Phys. A: Math. Gen., 37 (2004), 10363–10374, arXiv: hep-th/0405241 | DOI | MR | Zbl
[24] Landau L., Lifshitz E., Quantum mechanics, Pergamon, London, 1965 | Zbl
[25] Andrianov A. A., Cannata F., Ioffe M. V., Nishnianidze D. N., “Systems with higher-order shape invariance: spectral and algebraic properties”, Phys. Lett. A, 266 (2000), 341–349, arXiv: ; Cannata F., Ioffe M. V., Nishnianidze D. N., “Double shape invariance of the two-dimensional singular Morse model”, Phys. Lett. A, 340 (2005), 31–36, arXiv: quant-ph/9902057hep-th/0504077 | DOI | MR | Zbl | DOI | MR | Zbl
[26] Ioffe M. V., Mateos Guilarte J., Valinevich P. A., “A class of partially solvable two-dimensional quantum models with periodic potentials”, Nuclear Phys. B, 790 (2008), 414–431, arXiv: 0706.1344 | DOI | MR | Zbl
[27] Ioffe M. V., Nishnianidze D. N., “Exact solvability of a two-dimensional real singular Morse potential”, Phys. Rev. A, 76 (2007), 052114, 5 pp., arXiv: 0709.2960 | DOI | MR