@article{SIGMA_2010_6_a72,
author = {Gherardo Piacitelli},
title = {Quantum {Spacetime:} {a~Disambiguation}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a72/}
}
Gherardo Piacitelli. Quantum Spacetime: a Disambiguation. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a72/
[1] Doplicher S., “Spacetime and fields, a quantum texture”, AIP Conf. Proc., 589, 2001, 204–213, arXiv: hep-th/0105251 | DOI
[2] Doplicher S., “Quantum field theory on quantum spacetime”, J. Phys. Conf. Ser., 53 (2006), 793–798, arXiv: hep-th/0608124 | DOI
[3] Mead C. A., “Possible connection between gravitation and fundamental length”, Phys. Rev., 135 (1964), B849–B862 | DOI | MR
[4] Mead C. A., Wilczek F., “Walking the Planck length through history”, Phys. Today, 54 (2001), 15–15 | DOI
[5] Ciafaloni M., Veneziano G., “Superstring collisions at planckian energies”, Phys. Lett. B, 197 (1987), 81–88 | DOI
[6] Maggiore M., “A generalized uncertainty principle in quantum gravity”, Phys. Lett. B, 304 (1993), 65–69, arXiv: hep-th/9301067 | DOI | MR
[7] Doplicher S., Fredenhagen K., Roberts J. E., “The quantum structure of spacetime at the Planck scale and quantum fields”, Comm. Math. Phys., 172 (1995), 187–220, arXiv: hep-th/0303037 | DOI | MR | Zbl
[8] Maggiore M., “The algebraic structure of the generalized uncertainty principle”, Phys. Lett. B, 319 (1993), 83–86, arXiv: hep-th/9309034 | DOI | MR
[9] Snyder H. S., “Quantized space-time”, Phys. Rev., 71 (1947), 38–41 | DOI | MR | Zbl
[10] Bahns D., Doplicher S., Fredenhagen K., Piacitelli G., “Ultraviolet finite quantum field theory on quantum spacetime”, Comm. Math. Phys., 237 (2003), 221–241, arXiv: hep-th/0301100 | DOI | MR | Zbl
[11] Amelino-Camelia G., “Doubly-special relativity: facts, myths and some key open issues”, Symmetry, 2 (2010), 230–271, arXiv: 1003.3942 | DOI
[12] Dabrowski L., Godlinski M., Piacitelli G., “Lorentz covariant $k$-Minkowski spacetime”, Phys. Rev. D, 81 (2010), 125024, 8 pp., arXiv: 0912.5451 | DOI
[13] Cuntz J., “Bivariant $k$-theory and the Weyl algebra”, $K$-theory, 35 (2005), 93–137, arXiv: math/0401295 | DOI | MR | Zbl
[14] Rieffel M. A., “On the operator algebra for the space-time uncertainty relations”, Operator Algebras and Quantum Field Theory (Rome, 1996), Int. Press, Cambridge, MA, 1997, 374–382, arXiv: funct-an/9701011 | MR | Zbl
[15] Estrada R., Gracia-Bondia J. M., Varilly J. C., “On asymptotic expansions of twisted products”, J. Math. Phys., 30 (1989), 2789–2796 | DOI | MR | Zbl
[16] Aschieri P., Dimitrijević M., Kulish P., Lizzi F., Wess J., Noncommutative spacetimes: symmetries in noncommutative geometry and field theory, Springer, Dordrecht, 2009
[17] Weyl H., Gruppentheorie und Quantenmechanik, Hirzel, Leipzig, 1928 | Zbl
[18] von Neumann J., “Die Eindeutigkeit der Schrödingerschen Operatoren”, Math. Ann., 104 (1931), 570–578 | DOI | MR | Zbl
[19] Piacitelli G., Normal ordering of operator products on quantum spacetime and quantum field theory, PhD Thesis, Universitá di Padova, 2002
[20] Bahns D., Doplicher S., Fredenhagen K., Piacitelli G., Quantum geometry on quantum spacetime: distance, area and volume operators, arXiv: 1005.2130
[21] Djemai A. E. F., “Introduction to Dubois–Violette's noncommutative differential geometry”, Internat. J. Theoret. Phys., 34 (1995), 801–887 | DOI | MR | Zbl
[22] Piacitelli G., “Twisted covariance as a non-invariant restriction of the fully covariant DFR model”, Comm. Math. Phys., 295 (2010), 701–729, arXiv: 0902.0575 | DOI | MR | Zbl
[23] Piacitelli G., “Twisted covariance and Weyl quantisation”, AIP Conf. Proc., 1196, 2009, 219–224, arXiv: 0901.3109 | DOI
[24] Chaichian M., Kulish P. P., Nishijima K., Tureanu A., “On a Lorentz-invariant interpretation of noncommutative space-time and its implications on noncommutative QFT”, Phys. Lett. B, 604 (2004), 98–102, arXiv: hep-th/0408069 | DOI | MR
[25] Wess J., “Deformed coordinate spaces; derivatives”, Proceedings of the BW2003 Workshop on Mathematical Theoretical and Phenomenological Challenges Beyond the Standard Model: Perspectives of Balkans Collaboration (2003, Vrnjacka Banja, Serbia), Vrnjacka Banja, 2003, 122–128, arXiv: hep-th/0408080
[26] Dabrowski L., Piacitelli G., Poincaré covariant $k$-Minkowski spacetime, arXiv: 1006.5658
[27] Borowiec A., Pachoł A., $\kappa$-Minkowski spacetimes and DSR algebras: fresh look and old problems, arXiv: 1005.4429
[28] Corinaldesi E., “Some aspects of the problem of measurability in quantum electrodynamics”, Nuovo Cimento, 10, suppl. (1953), 83–100 | DOI | MR | Zbl
[29] Bahns D., Ultraviolet finiteness of the averaged Hamiltonian on the noncommutative Minkowski space, arXiv: hep-th/0405224
[30] Bahns D., Doplicher S., Fredenhagen K., Piacitelli G., “Field theory on noncommutative spacetimes: quasiplanar Wick products”, Phys. Rev. D, 71 (2005), 025022, 12 pp., arXiv: hep-th/0408204 | DOI | MR
[31] Bahns D., Doplicher S., Fredenhagen K., Piacitelli G., “On the unitarity problem in space-time noncommutative theories”, Phys. Lett. B, 533 (2002), 178–181, arXiv: hep-th/0201222 | DOI | MR | Zbl
[32] Gomis J., Mehen T., “Space-time noncommutative field theories and unitarity”, Nuclear Phys. B, 591 (2000), 265–276, arXiv: hep-th/0005129 | DOI | MR | Zbl
[33] Piacitelli G., “Non local theories: new rules for old diagrams”, J. High Energy Phys., 2004:8 (2004), 031, 13 pp., arXiv: hep-th/0403055 | DOI | MR
[34] Filk T., “Divergencies in a field theory on quantum space”, Phys. Lett. B, 376 (1996), 53–58 | DOI | MR | Zbl
[35] 't Hooft G., Veltman M. J. G., “DIAGRAMMAR”, NATO Adv. Study Inst. Ser. B Phys., 4, Plenum Publishing Corp., New York, 1974, 177–322
[36] Liao Y., Sibold K., “Time-ordered perturbation theory on non-commutative spacetime: basic rules”, Eur. Phys. J. C Part. Fields, 25 (2002), 469–477, arXiv: hep-th/0205269 | DOI | MR | Zbl
[37] Liao Y., Sibold K., “Time-ordered perturbation theory on noncommutative spacetime. II. Unitarity”, Eur. Phys. J. C Part. Fields, 25 (2002), 479–486, arXiv: hep-th/0206011 | DOI | MR | Zbl
[38] Bahns D., Perturbative methods on the noncommutative Minkowski space, PhD Thesis, Universität Hamburg, 2003
[39] Denk S., Schweda M., “Time ordered perturbation theory for non-local interactions: applications to NCQFT”, J. High Energy Phys., 2003:9 (2003), 032, 22 pp., arXiv: hep-th/0306101 | DOI | MR
[40] Roepstorff G., Path integral approach to quantum physics. An introduction, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1994 | MR | Zbl
[41] Bahns D., Schwinger functions in noncommutative quantum field theory, arXiv: 0908.4537
[42] Minwalla S., Van Raamsdonk M., Seiberg N., “Noncommutative perturbative dynamics”, J. High Energy Phys., 2000:2 (2000), 020, 31 pp., arXiv: hep-th/9912072 | DOI | MR