Measure Theory in Noncommutative Spaces
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The integral in noncommutative geometry (NCG) involves a non-standard trace called a Dixmier trace. The geometric origins of this integral are well known. From a measure-theoretic view, however, the formulation contains several difficulties. We review results concerning the technical features of the integral in NCG and some outstanding problems in this area. The review is aimed for the general user of NCG.
Keywords: Dixmier trace; singular trace; noncommutative integration; noncommutative geometry; Lebesgue integral; noncommutative residue.
@article{SIGMA_2010_6_a71,
     author = {Steven Lord and Fedor Sukochev},
     title = {Measure {Theory} in {Noncommutative} {Spaces}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a71/}
}
TY  - JOUR
AU  - Steven Lord
AU  - Fedor Sukochev
TI  - Measure Theory in Noncommutative Spaces
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a71/
LA  - en
ID  - SIGMA_2010_6_a71
ER  - 
%0 Journal Article
%A Steven Lord
%A Fedor Sukochev
%T Measure Theory in Noncommutative Spaces
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a71/
%G en
%F SIGMA_2010_6_a71
Steven Lord; Fedor Sukochev. Measure Theory in Noncommutative Spaces. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a71/

[1] Chamseddine A. H., Connes A., “The spectral action principle”, Comm. Math. Phys., 186 (1997), 731–750, arXiv: hep-th/9606001 | DOI | MR | Zbl

[2] Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994 | MR | Zbl

[3] Connes A., “Gravity coupled with matter and the foundation of non-commutative geometry”, Comm. Math. Phys., 182 (1996), 155–176, arXiv: hep-th/9603053 | DOI | MR | Zbl

[4] Segal I. E., “A non-commutative extension of abstract integration”, Ann. of Math. (2), 57 (1953), 401–457 | DOI | MR | Zbl

[5] Kunze R. A., “$L_p$ Fourier transforms on locally compact unimodular groups”, Trans. Amer. Math. Soc., 89 (1958), 519–540 | DOI | MR

[6] Stinespring W. F., “Integration theorems for gages and duality for unimodular groups”, Trans. Amer. Math. Soc., 90 (1959), 15–56 | DOI | MR | Zbl

[7] Nelson E., “Notes on non-commutative integration”, J. Funct. Anal., 15 (1974), 103–116 | DOI | MR | Zbl

[8] Fack T., Kosaki H., “Generalised $s$-numbers of $\tau$-measurable operators”, Pacific J. Math., 123 (1986), 269–300 | MR | Zbl

[9] Pisier G., Xu Q., “Non-commutative $L^p$-spaces”, Handbook of the geometry of Banach spaces, v. 2, North-Holland, Amsterdam, 2003, 1459–1517 | DOI | MR | Zbl

[10] Pederson G. K., $C^*$-algebras and their automorphism groups, London Mathematical Society Monographs, 14, Academic Press, London, New York, 1979 | MR

[11] Simon B., Trace ideals and their applications, Mathematical Surveys and Monographs, 120, 2nd ed., American Mathematical Society, Providence, RI, 2005 | MR | Zbl

[12] von Neumann J., “Some matrix inequalities and metrization of metric-space”, Rev. Tomsk. Univ., 1 (1937), 286–300 | Zbl

[13] Bratteli O., Robinson D. W., Operator algebras and quantum statistical mechanics., v. 1, Texts and Monographs in Physics, $C^*$- and $W^*$-algebras, symmetry groups, decomposition of states, 2nd ed., Springer-Verlag, New York, 1987 | MR | Zbl

[14] Cipriani F., Guido D., Scarlatti S., “A remark on trace properties of $K$-cycles”, J. Operator. Theory, 35 (1996), 179–189, arXiv: funct-an/9506003 | MR | Zbl

[15] Carey A. L., Rennie A., Sedaev A., Sukochev F., “The Dixmier trace and asymptotics of zeta functions”, J. Funct. Anal., 249 (2007), 253–283, arXiv: math.OA/0611629 | DOI | MR | Zbl

[16] Benameuar M.-T., Fack T., “Type II non-commutative geometry. I. Dixmier trace in von Neumann algebras”, Adv. Math., 199 (2006), 29–87 | DOI | MR

[17] Connes A., “The action functional in noncommutative geometry”, Comm. Math. Phys., 117 (1988), 673–683 | DOI | MR | Zbl

[18] Dunford N., Schwartz J. T., Linear operators. Part I. General theory, John Wiley Sons, Inc., New York, 1988 | MR

[19] Carey A. L., Sukochev F. A., “Dixmier traces and some applications in noncommutative geometry”, Russian Math. Surveys, 61 (2006), 1039–1099, arXiv: math.OA/0608375 | DOI | MR | Zbl

[20] Guido D., Isola T., “Dimensions and singular traces for spectral triples, with applications to fractals”, J. Funct. Anal., 203 (2003), 362–400, arXiv: math.OA/0202108 | DOI | MR | Zbl

[21] Pietsch A., “About the Banach envelope of $l_{1,\infty}$”, Rev. Mat. Complut., 22 (2009), 209–226 | MR | Zbl

[22] Dixmier J., “Existence de traces non normales”, C. R. Acad. Sci. Paris Sér. A-B, 262 (1966), A1107–A1108 | MR

[23] Lorentz G. G., “A contribution to the theory of divergent sequences”, Acta. Math., 80 (1948), 167–190 | DOI | MR | Zbl

[24] Sucheston L., “Banach limits”, Amer. Math. Monthly, 74 (1967), 308–311 | DOI | MR | Zbl

[25] Carey A., Phillips J., Sukochev F., “Spectral flow and Dixmier traces”, Adv. Math., 173 (2003), 68–113, arXiv: math.OA/0205076 | DOI | MR | Zbl

[26] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolation of linear operators, Translations of Mathematical Monographs, 54, American Mathematical Society, Providence, R.I., 1982 | MR

[27] Lord S., Sedaev A., Sukochev F., “Dixmier traces as singular symmetric functionals and applications to measurable operators”, J. Funct. Anal., 244 (2005), 72–106, arXiv: math.FA/0501131 | DOI | MR

[28] Dodds P. G., de Pagter B., Semenov E. M., Sukochev F. A., “Symmetric functional and singular traces”, Positivity, 2 (1998), 47–75 | DOI | MR | Zbl

[29] J. Math. Sci., 2 (2004), 4867–4885 | DOI | MR | Zbl

[30] Izv. Math., 67 (2003), 1187–1212 | DOI | MR | Zbl

[31] Guido D., Isola T., “Singular traces on semifinite von Neumann algebras”, J. Funct. Anal., 134 (1995), 451–485 | DOI | MR | Zbl

[32] Sedaev A. A., “Generalized limits and related asymptotic formulas”, Math. Notes, 86 (2009), 577–590 | DOI | MR | Zbl

[33] Sedaev A. A., Sukochev F. A., Zanin D. V., “Lidskii-type formulae for Dixmier traces”, Integral Equations Operator Theory (to appear) , arXiv: 1003.1813

[34] Semenov E. M., Sukochev F. A., “Invariant Banach limits and applications”, J. Funct. Anal., 259 (2010), 1517–1541 | DOI | Zbl

[35] Azamov N. A., Sukochev F. A., “A Lidskii type formula for Dximier traces”, C. R. Math. Acad. Sci. Paris, 340 (2005), 107–112 | DOI | MR | Zbl

[36] Prinzis R., Traces résiduelles et asymptotique du spectre d'opérateurs pseduo-différentiels, Ph.D. Thesis, Lyon, 1995

[37] Calkin J. W., “Two-sided ideals and congruences in the ring of bounded operators in Hilbert space”, Ann. of Math. (2), 42 (1941), 839–873 | DOI | MR | Zbl

[38] Kalton N. J., Sukochev F. A., “Symmetric norms and spaces of operators”, J. Reine Angew. Math., 621 (2008), 81–121 | DOI | MR | Zbl

[39] Hardy G. H., Littlewood J. E., Pólya G., Inequalities, Cambridge University Press, Cambridge, 1934

[40] Kalton N., Sukochev F., “Rearrangement-invariant functionals with applications to traces on symmetrically normed ideals”, Canad. Math. Bull., 51 (2008), 67–80 | DOI | MR | Zbl

[41] Albeverio S., Guido D., Ponosov A., Scarlatti S., “Singular traces and compact operators”, J. Funct. Anal., 137 (1996), 281–302, arXiv: funct-an/9308001 | DOI | MR | Zbl

[42] Gracia-Bondía J. M., Várilly J. C., Figueroa H., Elements of noncommutative geometry, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Boston, Inc., Boston, MA, 2001 | MR | Zbl

[43] Wodzicki M., “Local invariants of spectral asymmetry”, Invent. Math., 75 (1984), 143–178 | DOI | MR | Zbl

[44] Shubin M. A., Pseudodifferential operators and spectral theory, 2nd ed., Springer-Verlag, Berlin, 2001 | MR

[45] Landi G., An introduction to noncommutative spaces and their geometries, Lecture Notes in Physics, New Series m: Monographs, 51, Springer-Verlag, Berlin, 1997 | MR

[46] Hörmander L., The analysis of linear partial differential operators, v. III, Grundlehren der Mathematischen Wissenschaften, 274, Pseudo-differential operators, Springer-Verlag, Berlin, 1994 | MR

[47] Connes A., Moscovici H., “The local index formula in noncommutative geometry”, Geom. Funct. Anal., 5 (1995), 174–243 | DOI | MR | Zbl

[48] Carey A. L., Philips J., Rennie A., Sukochev F. A., “The Hochschild class of the Chern character for semifinite spectral triples”, J. Funct. Anal., 213 (2004), 111–153, arXiv: math.OA/0312073 | DOI | MR | Zbl

[49] Carey A. L., Philips J., Rennie A., Sukochev F. A., “The local index formula in semifinite von Neumann algebras. I. Spectral flow”, Adv. Math., 202 (2006), 451–516, arXiv: math.OA/0411019 | DOI | MR | Zbl

[50] Carey A. L., Philips J., Rennie A., Sukochev F. A., “The local index formula in semifinite von Neumann algebras. II. The even case”, Adv. Math., 202 (2006), 517–554, arXiv: math.OA/0411021 | DOI | MR | Zbl

[51] Carey A., Potapov D., Sukochev F., “Spectral flow is the integral of one forms on the Banach manifold of self adjoint Fredholm operators”, Adv. Math., 222 (2009), 1809–1849, arXiv: 0807.2129 | DOI | MR | Zbl

[52] Higson N., “The residue index theorem of Connes and Moscovici”, Surveys in Noncommutative Geometry, Clay Math. Proc., 6, Amer. Math. Soc., Providence, RI, 2006, 71–126 | MR | Zbl

[53] Ponge R., “Noncommutative geometry and lower dimensional volumes in Riemannian geometry”, Lett. Math. Phys., 83 (2008), 19–32, arXiv: 0707.4201 | DOI | MR | Zbl

[54] Guido D., Isola T., “Noncommutative Riemann integration and Novikov–Shubin invariants for open manifolds”, J. Funct. Anal., 176 (2000), 115–152, arXiv: math.OA/9802015 | DOI | MR | Zbl

[55] Englis M., Guo K., Zhang G., “Toeplitz and Hankel operators and Dixmier traces on the unit ball of $\mathbb C^n$”, Proc. Amer. Math. Soc., 137 (2009), 3669–3678, arXiv: 0707.2025 | DOI | MR | Zbl

[56] Nicola F., Rodino L., “Dixmier traceability for general pseudo-differential operators”, $C^*$-Algebras and Elliptic Theory, v. II, Trends Math., Birkhäuser, Basel, 2008, 227–237 | MR | Zbl

[57] Nest R., Schrohe E., “Dixmier's trace for boundary value problems”, Manuscripta Math, 96 (1998), 203–218 | DOI | MR | Zbl

[58] Pearson J., Bellissard J., “Noncommutative Riemannian geometry and diffusion on ultrametric Cantor sets”, J. Noncommut. Geom., 3 (2009), 447–480, arXiv: 0802.1336 | DOI | MR | Zbl

[59] Lapidus M. L., “Toward a noncommutative fractal geometry, Laplacians and volume measures on fractals”, Harmonic Analysis and Nonlinear Differential Equations (Riverside, CA, 1995), Contemp. Math., 208, Amer. Math. Soc., Providence, RI, 1997, 211–252 | MR | Zbl

[60] Rudin W., “Invariant means on $L^\infty$”, Collection of Articles Honoring the Completion by Antoni Zygmund of 50 Years of Scientific Activity, v. III, Studia Math., 44, 1972, 219–227 | MR

[61] Lord S., Potapov D., Sukochev F., “Measures from Dixmier traces and zeta functions”, J. Funct. Anal., 259 (2010), 1915–1949, arXiv: 0905.1172 | DOI | Zbl

[62] Lindenstrauss J., Tzafriri L., Classical Banach spaces, v. II, Ergebnisse der Mathematik und ihrer Grenzgebiete, 97, Function spaces, Springer-Verlag, Berlin, New York, 1979 | MR | Zbl

[63] Wodzicki M., “Noncommutative residue. I. Fundamentals”, $K$-Theory, Arithmetic and Geometry (Moscow, 1984–1986), Lecture Notes in Math., 1289, Springer, Berlin, 1987, 320–399 | MR

[64] Seeley R. T., “Complex powers of an elliptic operator”, Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966), Amer. Math. Soc., Providence, R.I., 1967, 288–307 | MR

[65] Minakshisundaram S., Pleijel A., “Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds”, Canad. J. Math., 1 (1949), 242–256 | MR | Zbl

[66] Higson N., “Meromorphic continuation of zeta functions associated to elliptic operators”, Operator Algebras, Quantization, and Noncommutative Geometry, Contemp. Math., 365, Amer. Math. Soc., Providence, RI, 2004, 129–142 | MR | Zbl

[67] Gilkey P. B., Invariance theory, the heat equation, and the Atiyah–Singer index theorem, Studies in Advanced Mathematics, 2nd ed., CRC Press, Boca Raton, FL, 1995 | MR | Zbl

[68] Berline N., Getzler E., Vergne M., Heat kernels and Dirac operators, Grundlehren der Mathematischen Wissenschaften, 298, Springer-Verlag, Berlin, 1992 | MR | Zbl

[69] Connes A., “Geometry from the spectral point of view”, Lett. Math. Phys., 34 (1995), 203–238 | DOI | MR | Zbl

[70] Lord S., Sukochev F. A., “Noncommutative residues and a characterisation of the noncommutative integral”, Proc. Amer. Math. Soc. (to appear) , arXiv: 0905.0187 | DOI

[71] Kalton N. J., “Spectral characterization of sums of commutators. I”, J. Reine Angew. Math., 504 (1998), 115–125, arXiv: math.FA/9709209 | DOI | MR | Zbl

[72] Dykema K. J., Figiel T., Weiss G., Wodzicki M., “Commutator structure of operator ideals”, Adv. Math., 185 (2004), 1–79 | DOI | MR | Zbl

[73] Donnelly H., “Quantum unique ergodicity”, Proc. Amer. Math. Soc., 131 (2003), 2945–2951 | DOI | MR | Zbl

[74] Sarnak P., “Arithmetic quantum chaos”, The Schur Lectures (Tel Aviv, 1992), Israel Math. Conf. Proc., 8, Bar-Ilan Univ., Ramat Gan, 1995, 183–236 | MR | Zbl

[75] Rieffel M. A., “$C^*$-algebras associated with irrational rotations”, Pacific J. Math., 93 (1981), 415–429 | MR | Zbl