@article{SIGMA_2010_6_a71,
author = {Steven Lord and Fedor Sukochev},
title = {Measure {Theory} in {Noncommutative} {Spaces}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a71/}
}
Steven Lord; Fedor Sukochev. Measure Theory in Noncommutative Spaces. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a71/
[1] Chamseddine A. H., Connes A., “The spectral action principle”, Comm. Math. Phys., 186 (1997), 731–750, arXiv: hep-th/9606001 | DOI | MR | Zbl
[2] Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994 | MR | Zbl
[3] Connes A., “Gravity coupled with matter and the foundation of non-commutative geometry”, Comm. Math. Phys., 182 (1996), 155–176, arXiv: hep-th/9603053 | DOI | MR | Zbl
[4] Segal I. E., “A non-commutative extension of abstract integration”, Ann. of Math. (2), 57 (1953), 401–457 | DOI | MR | Zbl
[5] Kunze R. A., “$L_p$ Fourier transforms on locally compact unimodular groups”, Trans. Amer. Math. Soc., 89 (1958), 519–540 | DOI | MR
[6] Stinespring W. F., “Integration theorems for gages and duality for unimodular groups”, Trans. Amer. Math. Soc., 90 (1959), 15–56 | DOI | MR | Zbl
[7] Nelson E., “Notes on non-commutative integration”, J. Funct. Anal., 15 (1974), 103–116 | DOI | MR | Zbl
[8] Fack T., Kosaki H., “Generalised $s$-numbers of $\tau$-measurable operators”, Pacific J. Math., 123 (1986), 269–300 | MR | Zbl
[9] Pisier G., Xu Q., “Non-commutative $L^p$-spaces”, Handbook of the geometry of Banach spaces, v. 2, North-Holland, Amsterdam, 2003, 1459–1517 | DOI | MR | Zbl
[10] Pederson G. K., $C^*$-algebras and their automorphism groups, London Mathematical Society Monographs, 14, Academic Press, London, New York, 1979 | MR
[11] Simon B., Trace ideals and their applications, Mathematical Surveys and Monographs, 120, 2nd ed., American Mathematical Society, Providence, RI, 2005 | MR | Zbl
[12] von Neumann J., “Some matrix inequalities and metrization of metric-space”, Rev. Tomsk. Univ., 1 (1937), 286–300 | Zbl
[13] Bratteli O., Robinson D. W., Operator algebras and quantum statistical mechanics., v. 1, Texts and Monographs in Physics, $C^*$- and $W^*$-algebras, symmetry groups, decomposition of states, 2nd ed., Springer-Verlag, New York, 1987 | MR | Zbl
[14] Cipriani F., Guido D., Scarlatti S., “A remark on trace properties of $K$-cycles”, J. Operator. Theory, 35 (1996), 179–189, arXiv: funct-an/9506003 | MR | Zbl
[15] Carey A. L., Rennie A., Sedaev A., Sukochev F., “The Dixmier trace and asymptotics of zeta functions”, J. Funct. Anal., 249 (2007), 253–283, arXiv: math.OA/0611629 | DOI | MR | Zbl
[16] Benameuar M.-T., Fack T., “Type II non-commutative geometry. I. Dixmier trace in von Neumann algebras”, Adv. Math., 199 (2006), 29–87 | DOI | MR
[17] Connes A., “The action functional in noncommutative geometry”, Comm. Math. Phys., 117 (1988), 673–683 | DOI | MR | Zbl
[18] Dunford N., Schwartz J. T., Linear operators. Part I. General theory, John Wiley Sons, Inc., New York, 1988 | MR
[19] Carey A. L., Sukochev F. A., “Dixmier traces and some applications in noncommutative geometry”, Russian Math. Surveys, 61 (2006), 1039–1099, arXiv: math.OA/0608375 | DOI | MR | Zbl
[20] Guido D., Isola T., “Dimensions and singular traces for spectral triples, with applications to fractals”, J. Funct. Anal., 203 (2003), 362–400, arXiv: math.OA/0202108 | DOI | MR | Zbl
[21] Pietsch A., “About the Banach envelope of $l_{1,\infty}$”, Rev. Mat. Complut., 22 (2009), 209–226 | MR | Zbl
[22] Dixmier J., “Existence de traces non normales”, C. R. Acad. Sci. Paris Sér. A-B, 262 (1966), A1107–A1108 | MR
[23] Lorentz G. G., “A contribution to the theory of divergent sequences”, Acta. Math., 80 (1948), 167–190 | DOI | MR | Zbl
[24] Sucheston L., “Banach limits”, Amer. Math. Monthly, 74 (1967), 308–311 | DOI | MR | Zbl
[25] Carey A., Phillips J., Sukochev F., “Spectral flow and Dixmier traces”, Adv. Math., 173 (2003), 68–113, arXiv: math.OA/0205076 | DOI | MR | Zbl
[26] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolation of linear operators, Translations of Mathematical Monographs, 54, American Mathematical Society, Providence, R.I., 1982 | MR
[27] Lord S., Sedaev A., Sukochev F., “Dixmier traces as singular symmetric functionals and applications to measurable operators”, J. Funct. Anal., 244 (2005), 72–106, arXiv: math.FA/0501131 | DOI | MR
[28] Dodds P. G., de Pagter B., Semenov E. M., Sukochev F. A., “Symmetric functional and singular traces”, Positivity, 2 (1998), 47–75 | DOI | MR | Zbl
[29] J. Math. Sci., 2 (2004), 4867–4885 | DOI | MR | Zbl
[30] Izv. Math., 67 (2003), 1187–1212 | DOI | MR | Zbl
[31] Guido D., Isola T., “Singular traces on semifinite von Neumann algebras”, J. Funct. Anal., 134 (1995), 451–485 | DOI | MR | Zbl
[32] Sedaev A. A., “Generalized limits and related asymptotic formulas”, Math. Notes, 86 (2009), 577–590 | DOI | MR | Zbl
[33] Sedaev A. A., Sukochev F. A., Zanin D. V., “Lidskii-type formulae for Dixmier traces”, Integral Equations Operator Theory (to appear) , arXiv: 1003.1813
[34] Semenov E. M., Sukochev F. A., “Invariant Banach limits and applications”, J. Funct. Anal., 259 (2010), 1517–1541 | DOI | Zbl
[35] Azamov N. A., Sukochev F. A., “A Lidskii type formula for Dximier traces”, C. R. Math. Acad. Sci. Paris, 340 (2005), 107–112 | DOI | MR | Zbl
[36] Prinzis R., Traces résiduelles et asymptotique du spectre d'opérateurs pseduo-différentiels, Ph.D. Thesis, Lyon, 1995
[37] Calkin J. W., “Two-sided ideals and congruences in the ring of bounded operators in Hilbert space”, Ann. of Math. (2), 42 (1941), 839–873 | DOI | MR | Zbl
[38] Kalton N. J., Sukochev F. A., “Symmetric norms and spaces of operators”, J. Reine Angew. Math., 621 (2008), 81–121 | DOI | MR | Zbl
[39] Hardy G. H., Littlewood J. E., Pólya G., Inequalities, Cambridge University Press, Cambridge, 1934
[40] Kalton N., Sukochev F., “Rearrangement-invariant functionals with applications to traces on symmetrically normed ideals”, Canad. Math. Bull., 51 (2008), 67–80 | DOI | MR | Zbl
[41] Albeverio S., Guido D., Ponosov A., Scarlatti S., “Singular traces and compact operators”, J. Funct. Anal., 137 (1996), 281–302, arXiv: funct-an/9308001 | DOI | MR | Zbl
[42] Gracia-Bondía J. M., Várilly J. C., Figueroa H., Elements of noncommutative geometry, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Boston, Inc., Boston, MA, 2001 | MR | Zbl
[43] Wodzicki M., “Local invariants of spectral asymmetry”, Invent. Math., 75 (1984), 143–178 | DOI | MR | Zbl
[44] Shubin M. A., Pseudodifferential operators and spectral theory, 2nd ed., Springer-Verlag, Berlin, 2001 | MR
[45] Landi G., An introduction to noncommutative spaces and their geometries, Lecture Notes in Physics, New Series m: Monographs, 51, Springer-Verlag, Berlin, 1997 | MR
[46] Hörmander L., The analysis of linear partial differential operators, v. III, Grundlehren der Mathematischen Wissenschaften, 274, Pseudo-differential operators, Springer-Verlag, Berlin, 1994 | MR
[47] Connes A., Moscovici H., “The local index formula in noncommutative geometry”, Geom. Funct. Anal., 5 (1995), 174–243 | DOI | MR | Zbl
[48] Carey A. L., Philips J., Rennie A., Sukochev F. A., “The Hochschild class of the Chern character for semifinite spectral triples”, J. Funct. Anal., 213 (2004), 111–153, arXiv: math.OA/0312073 | DOI | MR | Zbl
[49] Carey A. L., Philips J., Rennie A., Sukochev F. A., “The local index formula in semifinite von Neumann algebras. I. Spectral flow”, Adv. Math., 202 (2006), 451–516, arXiv: math.OA/0411019 | DOI | MR | Zbl
[50] Carey A. L., Philips J., Rennie A., Sukochev F. A., “The local index formula in semifinite von Neumann algebras. II. The even case”, Adv. Math., 202 (2006), 517–554, arXiv: math.OA/0411021 | DOI | MR | Zbl
[51] Carey A., Potapov D., Sukochev F., “Spectral flow is the integral of one forms on the Banach manifold of self adjoint Fredholm operators”, Adv. Math., 222 (2009), 1809–1849, arXiv: 0807.2129 | DOI | MR | Zbl
[52] Higson N., “The residue index theorem of Connes and Moscovici”, Surveys in Noncommutative Geometry, Clay Math. Proc., 6, Amer. Math. Soc., Providence, RI, 2006, 71–126 | MR | Zbl
[53] Ponge R., “Noncommutative geometry and lower dimensional volumes in Riemannian geometry”, Lett. Math. Phys., 83 (2008), 19–32, arXiv: 0707.4201 | DOI | MR | Zbl
[54] Guido D., Isola T., “Noncommutative Riemann integration and Novikov–Shubin invariants for open manifolds”, J. Funct. Anal., 176 (2000), 115–152, arXiv: math.OA/9802015 | DOI | MR | Zbl
[55] Englis M., Guo K., Zhang G., “Toeplitz and Hankel operators and Dixmier traces on the unit ball of $\mathbb C^n$”, Proc. Amer. Math. Soc., 137 (2009), 3669–3678, arXiv: 0707.2025 | DOI | MR | Zbl
[56] Nicola F., Rodino L., “Dixmier traceability for general pseudo-differential operators”, $C^*$-Algebras and Elliptic Theory, v. II, Trends Math., Birkhäuser, Basel, 2008, 227–237 | MR | Zbl
[57] Nest R., Schrohe E., “Dixmier's trace for boundary value problems”, Manuscripta Math, 96 (1998), 203–218 | DOI | MR | Zbl
[58] Pearson J., Bellissard J., “Noncommutative Riemannian geometry and diffusion on ultrametric Cantor sets”, J. Noncommut. Geom., 3 (2009), 447–480, arXiv: 0802.1336 | DOI | MR | Zbl
[59] Lapidus M. L., “Toward a noncommutative fractal geometry, Laplacians and volume measures on fractals”, Harmonic Analysis and Nonlinear Differential Equations (Riverside, CA, 1995), Contemp. Math., 208, Amer. Math. Soc., Providence, RI, 1997, 211–252 | MR | Zbl
[60] Rudin W., “Invariant means on $L^\infty$”, Collection of Articles Honoring the Completion by Antoni Zygmund of 50 Years of Scientific Activity, v. III, Studia Math., 44, 1972, 219–227 | MR
[61] Lord S., Potapov D., Sukochev F., “Measures from Dixmier traces and zeta functions”, J. Funct. Anal., 259 (2010), 1915–1949, arXiv: 0905.1172 | DOI | Zbl
[62] Lindenstrauss J., Tzafriri L., Classical Banach spaces, v. II, Ergebnisse der Mathematik und ihrer Grenzgebiete, 97, Function spaces, Springer-Verlag, Berlin, New York, 1979 | MR | Zbl
[63] Wodzicki M., “Noncommutative residue. I. Fundamentals”, $K$-Theory, Arithmetic and Geometry (Moscow, 1984–1986), Lecture Notes in Math., 1289, Springer, Berlin, 1987, 320–399 | MR
[64] Seeley R. T., “Complex powers of an elliptic operator”, Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966), Amer. Math. Soc., Providence, R.I., 1967, 288–307 | MR
[65] Minakshisundaram S., Pleijel A., “Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds”, Canad. J. Math., 1 (1949), 242–256 | MR | Zbl
[66] Higson N., “Meromorphic continuation of zeta functions associated to elliptic operators”, Operator Algebras, Quantization, and Noncommutative Geometry, Contemp. Math., 365, Amer. Math. Soc., Providence, RI, 2004, 129–142 | MR | Zbl
[67] Gilkey P. B., Invariance theory, the heat equation, and the Atiyah–Singer index theorem, Studies in Advanced Mathematics, 2nd ed., CRC Press, Boca Raton, FL, 1995 | MR | Zbl
[68] Berline N., Getzler E., Vergne M., Heat kernels and Dirac operators, Grundlehren der Mathematischen Wissenschaften, 298, Springer-Verlag, Berlin, 1992 | MR | Zbl
[69] Connes A., “Geometry from the spectral point of view”, Lett. Math. Phys., 34 (1995), 203–238 | DOI | MR | Zbl
[70] Lord S., Sukochev F. A., “Noncommutative residues and a characterisation of the noncommutative integral”, Proc. Amer. Math. Soc. (to appear) , arXiv: 0905.0187 | DOI
[71] Kalton N. J., “Spectral characterization of sums of commutators. I”, J. Reine Angew. Math., 504 (1998), 115–125, arXiv: math.FA/9709209 | DOI | MR | Zbl
[72] Dykema K. J., Figiel T., Weiss G., Wodzicki M., “Commutator structure of operator ideals”, Adv. Math., 185 (2004), 1–79 | DOI | MR | Zbl
[73] Donnelly H., “Quantum unique ergodicity”, Proc. Amer. Math. Soc., 131 (2003), 2945–2951 | DOI | MR | Zbl
[74] Sarnak P., “Arithmetic quantum chaos”, The Schur Lectures (Tel Aviv, 1992), Israel Math. Conf. Proc., 8, Bar-Ilan Univ., Ramat Gan, 1995, 183–236 | MR | Zbl
[75] Rieffel M. A., “$C^*$-algebras associated with irrational rotations”, Pacific J. Math., 93 (1981), 415–429 | MR | Zbl