On Special Berwald Metrics
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study a class of Finsler metrics which contains the class of Berwald metrics as a special case. We prove that every Finsler metric in this class is a generalized Douglas–Weyl metric. Then we study isotropic flag curvature Finsler metrics in this class. Finally we show that on this class of Finsler metrics, the notion of Landsberg and weakly Landsberg curvature are equivalent.
Keywords: Randers metric; Douglas curvature; Berwald curvature.
@article{SIGMA_2010_6_a7,
     author = {Akbar Tayebi and Esmaeil Peyghan},
     title = {On {Special} {Berwald} {Metrics}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a7/}
}
TY  - JOUR
AU  - Akbar Tayebi
AU  - Esmaeil Peyghan
TI  - On Special Berwald Metrics
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a7/
LA  - en
ID  - SIGMA_2010_6_a7
ER  - 
%0 Journal Article
%A Akbar Tayebi
%A Esmaeil Peyghan
%T On Special Berwald Metrics
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a7/
%G en
%F SIGMA_2010_6_a7
Akbar Tayebi; Esmaeil Peyghan. On Special Berwald Metrics. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a7/

[1] Akbar-Zadeh H., “Sur les espaces de Finsler à courbures sectionnelles constantes”, Acad. Roy. Belg. Bull. Cl. Sci. (5), 74:10 (1988), 271–322 | MR

[2] Antonelli P. L., Handbook of Finsler geometry, Kluwer Academic Publishers, Dordrecht, 2003 | MR

[3] Berwald L., “Über Parallelübertragung in Räumen mit allgemeiner Massbestimmung”, Jahresbericht D.M.V., 34 (1926), 213–220 | Zbl

[4] Bácsó S., Matsumoto M., “On Finsler spaces of Douglas type – a generalization of notion of Berwald space”, Publ. Math. Debrecen, 51 (1997), 385–406 | MR | Zbl

[5] Bácsó S., Papp I., “A note on a generalized Douglas space”, Period. Math. Hungar., 48 (2004), 181–184 | DOI | MR | Zbl

[6] Chen X., Shen Z., “On Douglas metrics”, Publ. Math. Debrecen, 66 (2005), 503–512 | MR | Zbl

[7] Ichijyō Y., “Finsler manifolds modeled on a Minkowski space”, J. Math. Kyoto Univ., 16 (1976), 639–652 | MR | Zbl

[8] Matsumoto M., “On $C$-reducible Finsler spaces”, Tensor (N.S.), 24 (1972), 29–37 | MR | Zbl

[9] Matsumoto M., Hōjō S., “A conclusive theorem for $C$-reducible Finsler spaces”, Tensor (N.S.), 32 (1978), 225–230 | MR | Zbl

[10] Najafi B., Shen Z., Tayebi A., “On a projective class of Finsler metrics”, Publ. Math. Debrecen, 70 (2007), 211–219 | MR | Zbl

[11] Najafi B., Shen Z., Tayebi A., “Finsler metrics of scalar flag curvature with special non-Riemannian curvature properties”, Geom. Dedicata, 131 (2008), 87–97 | DOI | MR | Zbl

[12] Pande H. D., Tripathi P. N., Prasad B. N., “On a special form of the $hv$-curvature tensor of Berwald's connection $B\Gamma$ of Finsler space”, Indian J. Pure. Appl. Math., 25 (1994), 1275–1280 | MR | Zbl

[13] Shen Z., Lectures on Finsler geometry, World Scientific Publishing Co., Singapore, 2001 | MR

[14] Shen Z., Differential geometry of spray and Finsler spaces, Kluwer Academic Publishers, Dordrecht, 2001 | MR

[15] Tayebi A., Azizpour E., Esrafilian E., “On a family of connections in Finsler geometry”, Publ. Math. Debrecen, 72 (2008), 1–15 | MR | Zbl

[16] Tayebi A., Rafie Rad M., “$S$-curvature of isotropic Berwald metrics”, Sci. China Ser. A, 51 (2008), 2198–2204 | DOI | MR | Zbl