@article{SIGMA_2010_6_a69,
author = {Christian Scimiterna and Decio Levi},
title = {$C${-Integrability} {Test} for {Discrete} {Equations} via {Multiple} {Scale} {Expansions}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a69/}
}
TY - JOUR AU - Christian Scimiterna AU - Decio Levi TI - $C$-Integrability Test for Discrete Equations via Multiple Scale Expansions JO - Symmetry, integrability and geometry: methods and applications PY - 2010 VL - 6 UR - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a69/ LA - en ID - SIGMA_2010_6_a69 ER -
Christian Scimiterna; Decio Levi. $C$-Integrability Test for Discrete Equations via Multiple Scale Expansions. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a69/
[1] Agrotis M., Lafortune S., Kevrekidis P. G., “On a discrete version of the Korteweg–de Vries equation”, Discrete Contin. Dyn. Syst. suppl., 2005, 22–29 | MR | Zbl
[2] Burgers J. M., “A mathematical model illustrating the theory of turbulence”, Adv. Appl. Mech., 1 (1948), 171–199 | DOI | MR
[3] Calogero F., “Why are certain nonlinear PDEs both widely applicable and integrable?”, What is Integrability?, Springer Ser. Nonlinear Dynam., ed. V. E. Zakharov, Springer, Berlin, 1991, 1–62 | MR | Zbl
[4] Calogero F., Eckhaus W., “Necessary conditions for integrability of nonlinear PDEs”, Inverse Problems, 3 (1987), L27–L32 ; Calogero F., Eckhaus W., “Nonlinear evolution equations, rescalings, model PDEs and their integrability. I”, Inverse Problems, 3 (1987), 229–262 ; Calogero F., Eckhaus W., “Nonlinear evolution equations, rescalings, model PDEs and their integrability. II”, Inverse Problems, 4 (1987), 11–33 ; Calogero F., Degasperis A., Ji X-D., “Nonlinear Schrödinger-type equations from multiple scale reduction of PDEs. I. Systematic derivation”, J. Math. Phys., 41 (2000), 6399–6443 ; Calogero F., Degasperis A., Ji X-D., “Nonlinear Schrödinger-type equations from multiple scale reduction of PDEs. II. Necessary conditions of integrability for real PDEs”, J. Math. Phys., 42 (2001), 2635–2652 ; Calogero F., Maccari A., “Equations of nonlinear Schrödinger type in $1+1$ and $2+1$ dimensions obtained from integrable PDEs”, Inverse Problems: an Interdisciplinary Study (Montpellier, 1986), Adv. Electron. Electron Phys., 19, Suppl., ed. C. P. Sabatier, Academic Press, London, 1987, 463–480 | MR | Zbl | MR | Zbl | MR | DOI | MR | Zbl | DOI | MR | Zbl | MR
[5] Cole J. D., “On a quasi-linear parabolic equation occurring in aerodynamics”, Quart. Appl. Math., 9 (1951), 225–236 | MR | Zbl
[6] Degasperis A., Private communication
[7] Theoret. and Math. Phys., 133 (2002), 1463–1474 | DOI | MR
[8] Degasperis A., Manakov S. V., Santini P. M., “Multiple-scale perturbation beyond the nonlinear Schrödinger equation. I”, Phys. D, 100 (1997), 187–211 | DOI | MR | Zbl
[9] Degasperis A., Procesi M., “Asymptotic integrability”, Symmetry and Perturbation Theory, SPT98 (Rome, 1998), eds. A. Degasperis and G. Gaeta, World Sci. Publ., River Edge, NJ, 1999, 23–37 ; Degasperis A., “Multiscale expansion and integrability of dispersive wave equations”, Integrability, ed. A. V. Mikhailov, Springer, Berlin, 2009, 215–244 | MR | Zbl | Zbl
[10] Hernandez Heredero R., Levi D., Petrera M., Scimiterna C., “Multiscale expansion of the lattice potential KdV equation on functions of an infinite slow-varyness order”, J. Phys. A: Math. Theor., 40 (2007), F831–F840, arXiv: 0706.1046 | DOI | MR | Zbl
[11] Hernandez Heredero R., Levi D., Petrera M., Scimiterna C., “Multiscale expansion on the lattice and integrability of partial difference equations”, J. Phys. A: Math. Theor., 41 (2008), 315208, 12 pp., arXiv: 0710.5299 | DOI | MR
[12] Hernandez Heredero R., Levi D., Petrera M., Scimiterna C., “Multiscale expansion and integrability properties of the lattice potential KdV equation”, J. Nonlinear Math. Phys., 15:3 (2008), 323–333, arXiv: 0709.3704 | DOI | MR
[13] Hietarinta J., Viallet C., “Singularity confinement and chaos in discrete systems”, Phys. Rev. Lett., 81 (1998), 325–328, arXiv: solv-int/9711014 | DOI
[14] Hopf E., “The partial differential equation $u_t+uu_x=u_{xx}$”, Comm. Pure Appl. Math., 3 (1950), 201–230 | DOI | MR | Zbl
[15] Kodama Y., Mikhailov A. V., “Obstacles to asymptotic integrability”, Algebraic Aspects of Integrable Systems, Progr. Nonlinear Differential Equations Appl., 26, Birkhäuser Boston, Boston, MA, 1997, 173–204 ; Hiraoka Y., Kodama Y., “Normal form and solitons”, Integrability, ed. A. V. Mikhailov, Springer, Berlin, 2009, 175–214, arXiv: nlin.SI/0206021 | MR | Zbl | MR | Zbl
[16] Leon J., Manna M., “Multiscale analysis of discrete nonlinear evolution equations”, J. Phys. A: Math. Gen., 32 (1999), 2845–2869, arXiv: solv-int/9902005 | DOI | MR | Zbl
[17] Levi D., “Multiple-scale analysis of discrete nonlinear partial difference equations: the reduction of the lattice potential KdV”, J. Phys. A: Math. Gen., 38 (2005), 7677–7689, arXiv: nlin.SI/0505061 | DOI | MR | Zbl
[18] Levi D., Hernandez Heredero R., “Multiscale analysis of discrete nonlinear evolution equations: the reduction of the dNLS”, J. Nonlinear Math. Phys., 12, suppl. 1 (2005), 440–448 | DOI | MR
[19] Levi D., Petrera M., “Discrete reductive perturbation technique”, J. Math. Phys., 47 (2006), 043509, 20 pp., arXiv: math-ph/0510084 | DOI | MR
[20] Levi D., Petrera M., “Continuous symmetries of the lattice potential KdV equation”, J. Phys. A: Math. Theor., 40 (2007), 4141–4159, arXiv: math-ph/0701079 | DOI | MR | Zbl
[21] Levi D., Ragnisco O., Bruschi M., “Continuous and discrete matrix Burgers' hierarchies”, Nuovo Cimento B (11), 74 (1983), 33–51 | DOI | MR
[22] Levi D., Scimiterna C., “The Kundu–Eckhaus equation and its discretizations”, J. Phys. A: Math. Theor., 42 (2009), 465203, 8 pp., arXiv: 0904.4844 | DOI | MR
[23] Ramani A., Grammaticos B., Tamizhmani K. M., “Painlevé analysis and singularity confinement: the ultimate conjecture”, J. Phys. A: Math. Gen., 26 (1993), L53–L58 | DOI | MR | Zbl
[24] Santini P. M., “The multiscale expansions of difference equations in the small lattice spacing regime, and a vicinity and integrability test. I”, J. Phys. A: Math. Theor., 43 (2010), 045209, 27 pp., arXiv: 0908.1492 | DOI | MR | Zbl
[25] Scimiterna C., Multiscale techniques for nonlinear difference equations, Ph.D. Thesis, Roma Tre University, 2009
[26] Schoombie S. W., “A discrete multiscales analysis of a discrete version of the Korteweg–de Vries equation”, J. Comp. Phys., 101 (1992), 55–70 | DOI | MR | Zbl
[27] Whitham G. B., Linear and nonlinear waves, Wiley-Interscience, New York, 1974 | MR | Zbl