@article{SIGMA_2010_6_a68,
author = {Sergio Luki\'c},
title = {Balanced {Metrics} and {Noncommutative} {K\"ahler} {Geometry}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a68/}
}
Sergio Lukić. Balanced Metrics and Noncommutative Kähler Geometry. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a68/
[1] Alvarez-Gaumé L., Freedman D. Z., Mukhi S., “The background field method and the ultraviolet structure of the supersymmetric nonlinear $\sigma$-model”, Ann. Physics, 134 (1981), 85–109 | DOI | MR
[2] Axelrod S., Della Pietra S., Witten E., “Geometric quantization of Chern–Simons gauge theory”, J. Differential Geom., 33 (1991), 787–902 | MR | Zbl
[3] Banks T., Fischler W., Shenker S. H., Susskind L., “M theory as a matrix model: a conjecture”, Phys. Rev. D, 55 (1997), 5112–5128, arXiv: hep-th/9610043 | DOI | MR
[4] Bordemann M., Meinrenken E., Schlichenmaier M., “Toeplitz quantization of Kähler manifolds and $gl(N)$, $N\to\infty$ limits”, Comm. Math. Phys., 165 (1994), 281–296, arXiv: hep-th/9309134 | DOI | MR | Zbl
[5] Bressler P., Soibelman Y., Mirror symmetry and deformation quantization, arXiv: hep-th/0202128
[6] Cattaneo A. S., Felder G., “A path integral approach to the Kontsevich quantization formula”, Comm. Math. Phys., 212 (2000), 591–611, arXiv: math.QA/9902090 | DOI | MR | Zbl
[7] Cornalba L., Taylor W., “Holomorphic curves from matrices”, Nuclear Phys. B, 536 (1998), 513–552, arXiv: hep-th/9807060 | DOI | MR
[8] Donaldson S. K., “Scalar curvature and projective embeddings. I”, J. Differential Geom., 59 (2001), 479–522 | MR | Zbl
[9] Donaldson S. K., “Some numerical results in complex differential geometry”, Pure Appl. Math. Q., 5 (2009), 571–618, arXiv: math.DG/0512625 | MR | Zbl
[10] Douglas M. R., Karp R. L., Lukic S., Reinbacher R., “Numerical solution to the hermitian Yang–Mills equation on the Fermat quintic”, J. High Energy Phys., 2007:12 (2007), 083, 24 pp., arXiv: hep-th/0606261 | DOI | MR
[11] Douglas M. R., Karp R. L., Lukic S., Reinbacher R., “Numerical Calabi–Yau metrics”, J. Math. Phys., 49 (2008), 032302, 19 pp., arXiv: hep-th/0612075 | DOI | MR
[12] Elitzur S., Moore G. W., Schwimmer A., Seiberg N., “Remarks on the canonical quantization of the Chern–Simons–Witten theory”, Nuclear Phys. B, 326 (1989), 108–134 | DOI | MR
[13] Gaiotto D., Simons A., Strominger A., Yin X., “D0-branes in black hole attractors”, J. High Energy Phys., 2006:3 (2006), 019, 24 pp., arXiv: hep-th/0412179 | DOI | MR
[14] Kachru S., Lawrence A. E., Silverstein E., “On the matrix description of Calabi–Yau compactifications”, Phys. Rev. Lett., 80 (1998), 2996–2999, arXiv: hep-th/9712223 | DOI | MR
[15] Kapustin A., “Topological strings on noncommutative manifolds”, Int. J. Geom. Methods Mod. Phys., 1 (2004), 49–81, arXiv: hep-th/0310057 | DOI | MR | Zbl
[16] Karabegov A. V., “Deformation quantizations with separation of variables on a Kähler manifold”, Comm. Math. Phys., 180 (1996), 745–755, arXiv: hep-th/9508013 | DOI | MR | Zbl
[17] Kontsevich M., “Deformation quantization of Poisson manifolds. I”, Lett. Math. Phys., 66 (2003), 157–216, arXiv: q-alg/9709040 | DOI | MR | Zbl
[18] Lu Z., “On the lower order terms of the asymptotic expansion of Tian–Yau–Zelditch”, Amer. J. Math., 122 (2000), 235–273, arXiv: math.DG/9811126 | MR | Zbl
[19] Rawnsley J. H., “Coherent states and Kähler manifolds”, Quart. J. Math. Oxford Ser. (2), 28:112 (1977), 403–415 | DOI | MR | Zbl
[20] Reshetikhin N., Takhtajan L. A., “Deformation quantization of Kähler manifolds”, L. D. Faddeev's Seminar on Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 201, Amer. Math. Soc., Providence, RI, 2000, 257–276, arXiv: math.QA/9907171 | MR | Zbl
[21] Seiberg N., Witten E., “String theory and noncommutative geometry”, J. High Energy Phys., 1999:9 (1999), 032, 93 pp., arXiv: hep-th/9908142 | DOI | MR
[22] Souriau J. M., Structure of dynamical systems. A symplectic view of physics, Progress in Mathematics, 149, Birkhäuser Boston, Inc., Boston, MA, 1997 | MR | Zbl
[23] Zelditch S., “Szegö kernels and a theorem of Tian”, Internat. Math. Res. Notices, 1998:6 (1998), 317–331, arXiv: math-ph/0002009 | DOI | MR | Zbl