Twist Quantization of String and Hopf Algebraic Symmetry
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe the twist quantization of string worldsheet theory, which unifies the description of quantization and the target space symmetry, based on the twisting of Hopf and module algebras. We formulate a method of decomposing a twist into successive twists to analyze the twisted Hopf and module algebra structure, and apply it to several examples, including finite twisted diffeomorphism and extra treatment for zero modes.
Keywords: string theory; qunatization; Hopf algebra; Drinfeld twist.
@article{SIGMA_2010_6_a67,
     author = {Tsuguhiko Asakawa and Satoshi Watamura},
     title = {Twist {Quantization} of {String} and {Hopf} {Algebraic} {Symmetry}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a67/}
}
TY  - JOUR
AU  - Tsuguhiko Asakawa
AU  - Satoshi Watamura
TI  - Twist Quantization of String and Hopf Algebraic Symmetry
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a67/
LA  - en
ID  - SIGMA_2010_6_a67
ER  - 
%0 Journal Article
%A Tsuguhiko Asakawa
%A Satoshi Watamura
%T Twist Quantization of String and Hopf Algebraic Symmetry
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a67/
%G en
%F SIGMA_2010_6_a67
Tsuguhiko Asakawa; Satoshi Watamura. Twist Quantization of String and Hopf Algebraic Symmetry. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a67/

[1] Asakawa T., Mori M., Watamura S., “Hopf algebra symmetry and string theory”, Progr. Theoret. Phys., 120 (2008), 659–689, arXiv: 0805.2203 | DOI | Zbl

[2] Asakawa T., Mori M., Watamura S., “Twist quantization of string and $B$ field background”, J. High Energy Phys., 2009:4 (2009), 117, 25 pp., arXiv: 0811.1638 | DOI | MR

[3] Drinfeld V. G., “Quasi-Hopf algebras”, Leningrad Math. J., 1 (1990), 1419–1457 | MR

[4] Chaichian M., Kulish P. P., Nishijima K., Tureanu A., “On a Lorentz-invariant interpretation of noncommutative space-time and its implications on noncommutative QFT”, Phys. Lett. B, 604 (2004), 98–102, arXiv: hep-th/0408069 | DOI | MR

[5] Koch F., Tsouchnika E., “Construction of $\theta$-Poincaré algebras and their invariants on $\mathcal M_\theta$”, Nuclear Phys. B, 717 (2005), 387–403, arXiv: hep-th/0409012 | DOI | MR | Zbl

[6] Aschieri P., Blohmann C., Dimitrijević M., Meyer F., Schupp P., Wess J., “A gravity theory on noncommutative spaces”, Classical Quantum Gravity, 22 (2005), 3511–3532, arXiv: hep-th/0504183 | DOI | MR | Zbl

[7] Watamura S., “Noncommutative geometry in string and twisted Hopf algebra of diffeomorphism”, Gen. Relativity Gravitation | DOI

[8] Aschieri P., Lizzi F., Vitale P., “Twisting all the way: from classical mechanics to quantum fields”, Phys. Rev. D, 77 (2008), 025037, 16 pp., arXiv: 0708.3002 | DOI | MR

[9] Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995 | MR | Zbl

[10] Polchinski J., String theory, Cambridge University Press, Cambridge, 1998

[11] Álvarez-Gaumé L., Meyer F., Vázquez-Mozo M. A., “Comments on noncommutative gravity”, Nuclear Phys. B, 753 (2006), 92–117, arXiv: hep-th/0605113 | DOI | MR | Zbl

[12] Fradkin E. S., Tseytlin A. A., “Nonlinear electrodynamics from quantized strings”, Phys. Lett. B, 163 (1985), 123–130 | DOI | MR | Zbl

[13] Callan C. G., Lovelace C., Nappi C. R., Yost S. A., “String loop corrections to beta functions”, Nuclear Phys. B, 288 (1987), 525–550 | DOI | MR

[14] Abouelsaood A., Callan C. G., Nappi C. R., Yost S. A., “Open strings in background gauge fields”, Nuclear Phys. B, 280 (1987), 599–624 | DOI | MR

[15] Braga N. R. F., Carrion H. L., Godinho C. F. L., “Normal ordering and boundary conditions in open bosonic strings”, J. Math. Phys., 46 (2005), 062302, 5 pp., arXiv: hep-th/0412075 | DOI | MR | Zbl

[16] Braga N. R. F., Carrion H. L., Godinho C. F. L., “Normal ordering and boundary conditions for fermionic string coordinates”, Phys. Lett. B, 638 (2006), 272–274, arXiv: hep-th/0602212 | DOI | MR

[17] Chakraborty B., Gangopadhyay S., Hazra A. G., “Normal ordering and noncommutativity in open bosonic strings”, Phys. Rev. D, 74 (2006), 105011, 6 pp., arXiv: hep-th/0608065 | DOI | MR

[18] Gangopadhyay S., Hazra A. G., “Normal ordering and non(anti)commutativity in open super strings”, Phys. Rev. D, 75 (2007), 065026, 6 pp., arXiv: hep-th/0703091 | DOI | MR

[19] Seiberg N., Witten E., “String theory and noncommutative geometry \”, J. High Energy Phys., 1999:9 (1999), 032, 93 pp., arXiv: hep-th/9908142 | DOI | MR

[20] Oeckl R., “Untwisting noncommutative $\mathbb R^d$ and the equivalence of quantum field theories”, Nuclear Phys. B, 581 (2000), 559–574, arXiv: hep-th/0003018 | DOI | MR | Zbl

[21] Watts P., Derivatives and the role of the Drinfeld twist in noncommutative string theory, arXiv: hep-th/0003234