@article{SIGMA_2010_6_a65,
author = {Ernest G. Kalnins and Jonathan M. Kress and Willard Miller Jr.},
title = {Tools for {Verifying} {Classical} and {Quantum} {Superintegrability}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a65/}
}
TY - JOUR AU - Ernest G. Kalnins AU - Jonathan M. Kress AU - Willard Miller Jr. TI - Tools for Verifying Classical and Quantum Superintegrability JO - Symmetry, integrability and geometry: methods and applications PY - 2010 VL - 6 UR - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a65/ LA - en ID - SIGMA_2010_6_a65 ER -
%0 Journal Article %A Ernest G. Kalnins %A Jonathan M. Kress %A Willard Miller Jr. %T Tools for Verifying Classical and Quantum Superintegrability %J Symmetry, integrability and geometry: methods and applications %D 2010 %V 6 %U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a65/ %G en %F SIGMA_2010_6_a65
Ernest G. Kalnins; Jonathan M. Kress; Willard Miller Jr. Tools for Verifying Classical and Quantum Superintegrability. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a65/
[1] Tempesta P., Winternitz P., Harnad J., Miller W. Jr., Pogosyan G. (eds.), Superintegrability in classical and quantum systems (Montréal, 2002), CRM Proceedings and Lecture Notes, 37, American Mathematical Society, Providence, RI, 2004 | MR
[2] Eastwood M., Miller W. Jr. (eds.), Symmetries and overdetermined systems of partial differential equations, Summer Program, Minneapolis, 2006, The IMA Volumes in Mathematics and its Applications, 144, Springer, New York, 2008 | MR
[3] Kalnins E. G., Kress J. M., Miller W. Jr., “Second-order superintegrable systems in conformally flat spaces. V. Two- and three-dimensional quantum systems”, J. Math. Phys., 47 (2006), 093501, 25 pp. | DOI | MR
[4] Kalnins E. G., Kress J. M., Pogosyan G. S., Miller W. Jr., “Completeness of superintegrability in two-dimensional constant curvature spaces”, J. Phys. A: Math Gen., 34 (2001), 4705–4720, arXiv: math-ph/0102006 | DOI | MR | Zbl
[5] Daskaloyannis C., Ypsilantis K., “Unified treatment and classification of superintegrable systems with integrals quadratic in momenta on a two dimensional manifold”, J. Math. Phys., 47 (2006), 042904, 38 pp., arXiv: math-ph/0412055 | DOI | MR | Zbl
[6] Kalnins E. G., Kress J. M., Miller W. Jr., “Nondegenerate three-dimensional complex Euclidean superintegrable systems and algebraic varieties”, J. Math. Phys., 48 (2007), 113518, 26 pp., arXiv: 0708.3044 | DOI | MR
[7] Kalnins E. G., Miller W. Jr., Post S., “Wilson polynomials and the generic superintegrable system on the 2-sphere”, J. Phys. A: Math. Theor., 40 (2007), 11525–11538 | DOI | MR | Zbl
[8] Kalnins E. G., Miller W. Jr., Post S., “Quantum and classical models for quadratic algebras associated with second order superintegrable systems”, SIGMA, 4 (2008), 008, 21 pp., arXiv: 0801.2848 | DOI | MR
[9] Chanu C., Degiovanni L., Rastelli G., “Superintegrable three-body systems on the line”, J. Math. Phys., 49 (2008), 112901, 10 pp., arXiv: 0802.1353 | DOI | MR
[10] Rodriguez M. A., Tempesta P., Winternitz P., “Reduction of superintegrable systems: the anisotropic harmonic oscillator”, Phys. Rev. E, 78 (2008), 046608, 6 pp., arXiv: ; Rodriguez M. A., Tempesta P., Winternitz P., “Symmetry reduction and superintegrable Hamiltonian systems”, J. Phys. Conf. Ser., 175 (2009), 012013, 8 pp., arXiv: 0807.10470906.3396 | DOI | MR | DOI
[11] Verrier P. E., Evans N. W., “A new superintegrable Hamiltonian”, J. Math. Phys., 49 (2008), 022902, 8 pp., arXiv: 0712.3677 | DOI | MR
[12] Tremblay F., Turbiner V. A., Winternitz P., “An infinite family of solvable and integrable quantum systems on a plane”, J. Phys. A: Math. Theor., 42 (2009), 242001, 10 pp., arXiv: 0904.0738 | DOI | MR
[13] Tremblay F., Turbiner A., Winternitz P., “Periodic orbits for an infinite family of classical superintegrable systems”, J. Phys. A: Math. Theor., 43 (2010), 015202, 14 pp., arXiv: 0910.0299 | DOI | MR
[14] Quesne C., “Superintegrability of the Tremblay–Turbiner–Winternitz quantum Hamiltonians on a plane for odd $k$”, J. Phys. A: Math. Theor., 43 (2010), 082001, 10 pp., arXiv: 0911.4404 | DOI
[15] Tremblay F., Winternitz P., “Third order superintegrable systems separating in polar coordinates”, J. Phys. A: Math. Theor., 43 (2010), 175206, 17 pp., arXiv: 1002.1989 | DOI | MR
[16] Post S., Winternitz P., “An infinite family of superintegrable deformations of the Coulomb potential”, J. Phys. A: Math. Theor., 43 (2010), 222001, 11 pp., arXiv: 1003.5230 | DOI | MR
[17] Kalnins E. G., Miller W. Jr., Post S., “Coupling constant metamorphosis and $N$th-order symmetries in classical and quantum mechanics”, J. Phys. A: Math. Theor., 43 (2010), 035202, 20 pp., arXiv: 0908.4393 | DOI | MR
[18] Kalnins E. G., Kress J. M., Miller W. Jr., “Families of classical subgroup separable superintegrable systems”, J. Phys. A: Math. Theor., 43 (2010), 092001, 8 pp., arXiv: 0912.3158 | DOI | MR
[19] Kalnins E. G., Kress J. M., Miller W. Jr., “Superintegrability and higher order integrals for quantum systems”, J. Phys. A: Math. Theor., 43 (2010), 265205, 21 pp., arXiv: 1002.2665 | DOI | MR
[20] Kalnins E. G., Miller W. Jr., Pogosyan G. S., “Superintegrability and higher order constants for classical and quantum systems”, Phys. Atomic Nuclei, arXiv: 0912.2278 | MR
[21] Eisenhart L. P., “Separable systems of Stäckel”, Ann. of Math. (2), 35 (1934), 284–305 | DOI | MR
[22] Kalnins E. G., Kress J. M., Miller W. Jr., “Second order superintegrable systems in conformally flat spaces. II. The classical two-dimensional Stäckel transform”, J. Math. Phys., 46 (2005), 053510, 15 pp. | DOI | MR
[23] Kalnins E. G., Kress J. M., Miller W. Jr., Post S., “Structure theory for second order 2D superintegrable systems with 1-parameter potentials”, SIGMA, 5 (2009), 008, 24 pp., arXiv: 0901.3081 | DOI | MR | Zbl
[24] Andrews G. E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, UK, 1999 | MR | Zbl