Double Affine Hecke Algebras of Rank 1 and the $\mathbb Z_3$-Symmetric Askey–Wilson Relations
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the double affine Hecke algebra $H=H(k_0,k_1,k^\vee_0,k^\vee_1;q)$ associated with the root system $(C^\vee_1,C_1)$. We display three elements $x$, $y$, $z$ in $H$ that satisfy essentially the $\mathbb Z_3$-symmetric Askey–Wilson relations. We obtain the relations as follows. We work with an algebra $\hat H$ that is more general than $H$, called the universal double affine Hecke algebra of type $(C_1^\vee,C_1)$. An advantage of $\hat H$ over $H$ is that it is parameter free and has a larger automorphism group. We give a surjective algebra homomorphism $\hat H\to H$. We define some elements $x$, $y$, $z$ in $\hat H$ that get mapped to their counterparts in $H$ by this homomorphism. We give an action of Artin's braid group $B_3$ on $\hat H$ that acts nicely on the elements $x$, $y$, $z$; one generator sends $x\mapsto y\mapsto z \mapsto x$ and another generator interchanges $x$, $y$. Using the $B_3$ action we show that the elements $x$, $y$, $z$ in $\hat H$ satisfy three equations that resemble the $\mathbb Z_3$-symmetric Askey–Wilson relations. Applying the homomorphism ${\hat H}\to H$ we find that the elements $x$, $y$, $z$ in $H$ satisfy similar relations.
Keywords: Askey–Wilson polynomials; Askey–Wilson relations; braid group.
@article{SIGMA_2010_6_a64,
     author = {Tatsuro Ito and Paul Terwilliger},
     title = {Double {Affine} {Hecke} {Algebras} of {Rank~1} and the $\mathbb Z_3${-Symmetric} {Askey{\textendash}Wilson} {Relations}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a64/}
}
TY  - JOUR
AU  - Tatsuro Ito
AU  - Paul Terwilliger
TI  - Double Affine Hecke Algebras of Rank 1 and the $\mathbb Z_3$-Symmetric Askey–Wilson Relations
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a64/
LA  - en
ID  - SIGMA_2010_6_a64
ER  - 
%0 Journal Article
%A Tatsuro Ito
%A Paul Terwilliger
%T Double Affine Hecke Algebras of Rank 1 and the $\mathbb Z_3$-Symmetric Askey–Wilson Relations
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a64/
%G en
%F SIGMA_2010_6_a64
Tatsuro Ito; Paul Terwilliger. Double Affine Hecke Algebras of Rank 1 and the $\mathbb Z_3$-Symmetric Askey–Wilson Relations. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a64/

[1] Askey R., Wilson J., Some basic hypergeometric polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc., 54, no. 319, 1985 | MR

[2] Cherednik I., “Double affine Hecke algebras, Knizhnik–Zamolodchikov equations, and Macdonald's operators”, Int. Math. Res. Not., 1992:9 (1992), 171–180 | DOI | MR | Zbl

[3] Ion B., Sahi S., “Triple groups and Cherednik algebras”, Jack, Hall–Littlewood and Macdonald polynomials, Contemp. Math., 417, Amer. Math. Soc., Providence, RI, 2006, 183–206, arXiv: math.QA/0304186 | MR | Zbl

[4] Koornwinder T. H., “The relationship between Zhedanov's algebra $AW(3)$ and the double affine Hecke algebra in the rank one case”, SIGMA, 3 (2007), 063, 15 pp., arXiv: math.QA/0612730 | DOI | MR

[5] Koornwinder T. H., “Zhedanov's algebra $AW(3)$ and the double affine Hecke algebra in the rank one case. II. The spherical subalgebra”, SIGMA, 4 (2008), 052, 17 pp., arXiv: 0711.2320 | DOI | MR | Zbl

[6] Macdonald I. G., Affine Hecke algebras and orthogonal polynomials, Cambridge Tracts in Mathematics, 157, Cambridge University Press, Cambridge, 2003 | MR | Zbl

[7] Noumi M., Stokman J. V., “Askey–Wilson polynomials: an affine Hecke algebraic approach”, Laredo Lectures on Orthogonal Polynomials and Special Functions, Adv. Theory Spec. Funct. Orthogonal Polynomials, Nova Sci. Publ., Hauppauge, NY, 2004, 111–114, arXiv: math.QA/0001033 | MR

[8] Oblomkov A., “Double affine Hecke algebras of rank 1 and affine cubic surfaces”, Int. Math. Res. Not., 2004:18 (2004), 877–912, arXiv: math.QA/0306393 | DOI | MR | Zbl

[9] Oblomkov A., Stoica E., “Finite dimensional representations of the double affine Hecke algebra of rank 1”, J. Pure Appl. Algebra, 213 (2009), 766–771, arXiv: math.QA/0409256 | DOI | MR | Zbl

[10] Rosenberg A. L., Noncommutative algebraic geometry and representations of quantized algebras, Mathematics and its Applications, 330, Kluwer Academic Publishers Group, Dordrecht, 1995 | MR | Zbl

[11] Sahi S., “Nonsymmetric Koornwinder polynomials and duality”, Ann. of Math. (2), 150 (1999), 267–282, arXiv: q-alg/9710032 | DOI | MR | Zbl

[12] Sahi S., “Some properties of Koornwinder polynomials”, $q$-Series from a Contemporary Perspective (South Hadley, MA, 1998), Contemp. Math., 254, Amer. Math. Soc., Providence, RI, 2000, 395–411 | MR | Zbl

[13] Sahi S., “Raising and lowering operators for Askey–Wilson polynomials”, SIGMA, 3 (2007), 002, 11 pp., arXiv: math.QA/0701134 | DOI | MR

[14] Smith S. P., Bell A. D., “Some 3-dimensional skew polynomial rings”, Lecture Notes, 1991, Unpublished

[15] Terwilliger P., Vidunas R., “Leonard pairs and the Askey–Wilson relations”, J. Algebra Appl., 3 (2004), 411–426, arXiv: math.QA/0305356 | DOI | MR | Zbl

[16] Wiegmann P. B., Zabrodin A. V., “Algebraization of difference eigenvalue equations related to $U_q(sl_2)$”, Nuclear Phys. B, 451 (1995), 699–724, arXiv: cond-mat/9501129 | DOI | MR | Zbl

[17] Theoret. and Math. Phys., 89 (1991), 1146–1157 | DOI | MR | Zbl