@article{SIGMA_2010_6_a64,
author = {Tatsuro Ito and Paul Terwilliger},
title = {Double {Affine} {Hecke} {Algebras} of {Rank~1} and the $\mathbb Z_3${-Symmetric} {Askey{\textendash}Wilson} {Relations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a64/}
}
TY - JOUR AU - Tatsuro Ito AU - Paul Terwilliger TI - Double Affine Hecke Algebras of Rank 1 and the $\mathbb Z_3$-Symmetric Askey–Wilson Relations JO - Symmetry, integrability and geometry: methods and applications PY - 2010 VL - 6 UR - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a64/ LA - en ID - SIGMA_2010_6_a64 ER -
%0 Journal Article %A Tatsuro Ito %A Paul Terwilliger %T Double Affine Hecke Algebras of Rank 1 and the $\mathbb Z_3$-Symmetric Askey–Wilson Relations %J Symmetry, integrability and geometry: methods and applications %D 2010 %V 6 %U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a64/ %G en %F SIGMA_2010_6_a64
Tatsuro Ito; Paul Terwilliger. Double Affine Hecke Algebras of Rank 1 and the $\mathbb Z_3$-Symmetric Askey–Wilson Relations. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a64/
[1] Askey R., Wilson J., Some basic hypergeometric polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc., 54, no. 319, 1985 | MR
[2] Cherednik I., “Double affine Hecke algebras, Knizhnik–Zamolodchikov equations, and Macdonald's operators”, Int. Math. Res. Not., 1992:9 (1992), 171–180 | DOI | MR | Zbl
[3] Ion B., Sahi S., “Triple groups and Cherednik algebras”, Jack, Hall–Littlewood and Macdonald polynomials, Contemp. Math., 417, Amer. Math. Soc., Providence, RI, 2006, 183–206, arXiv: math.QA/0304186 | MR | Zbl
[4] Koornwinder T. H., “The relationship between Zhedanov's algebra $AW(3)$ and the double affine Hecke algebra in the rank one case”, SIGMA, 3 (2007), 063, 15 pp., arXiv: math.QA/0612730 | DOI | MR
[5] Koornwinder T. H., “Zhedanov's algebra $AW(3)$ and the double affine Hecke algebra in the rank one case. II. The spherical subalgebra”, SIGMA, 4 (2008), 052, 17 pp., arXiv: 0711.2320 | DOI | MR | Zbl
[6] Macdonald I. G., Affine Hecke algebras and orthogonal polynomials, Cambridge Tracts in Mathematics, 157, Cambridge University Press, Cambridge, 2003 | MR | Zbl
[7] Noumi M., Stokman J. V., “Askey–Wilson polynomials: an affine Hecke algebraic approach”, Laredo Lectures on Orthogonal Polynomials and Special Functions, Adv. Theory Spec. Funct. Orthogonal Polynomials, Nova Sci. Publ., Hauppauge, NY, 2004, 111–114, arXiv: math.QA/0001033 | MR
[8] Oblomkov A., “Double affine Hecke algebras of rank 1 and affine cubic surfaces”, Int. Math. Res. Not., 2004:18 (2004), 877–912, arXiv: math.QA/0306393 | DOI | MR | Zbl
[9] Oblomkov A., Stoica E., “Finite dimensional representations of the double affine Hecke algebra of rank 1”, J. Pure Appl. Algebra, 213 (2009), 766–771, arXiv: math.QA/0409256 | DOI | MR | Zbl
[10] Rosenberg A. L., Noncommutative algebraic geometry and representations of quantized algebras, Mathematics and its Applications, 330, Kluwer Academic Publishers Group, Dordrecht, 1995 | MR | Zbl
[11] Sahi S., “Nonsymmetric Koornwinder polynomials and duality”, Ann. of Math. (2), 150 (1999), 267–282, arXiv: q-alg/9710032 | DOI | MR | Zbl
[12] Sahi S., “Some properties of Koornwinder polynomials”, $q$-Series from a Contemporary Perspective (South Hadley, MA, 1998), Contemp. Math., 254, Amer. Math. Soc., Providence, RI, 2000, 395–411 | MR | Zbl
[13] Sahi S., “Raising and lowering operators for Askey–Wilson polynomials”, SIGMA, 3 (2007), 002, 11 pp., arXiv: math.QA/0701134 | DOI | MR
[14] Smith S. P., Bell A. D., “Some 3-dimensional skew polynomial rings”, Lecture Notes, 1991, Unpublished
[15] Terwilliger P., Vidunas R., “Leonard pairs and the Askey–Wilson relations”, J. Algebra Appl., 3 (2004), 411–426, arXiv: math.QA/0305356 | DOI | MR | Zbl
[16] Wiegmann P. B., Zabrodin A. V., “Algebraization of difference eigenvalue equations related to $U_q(sl_2)$”, Nuclear Phys. B, 451 (1995), 699–724, arXiv: cond-mat/9501129 | DOI | MR | Zbl
[17] Theoret. and Math. Phys., 89 (1991), 1146–1157 | DOI | MR | Zbl