@article{SIGMA_2010_6_a63,
author = {Nicolas Franco},
title = {Global {Eikonal} {Condition} for {Lorentzian} {Distance} {Function} in {Noncommutative} {Geometry}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a63/}
}
Nicolas Franco. Global Eikonal Condition for Lorentzian Distance Function in Noncommutative Geometry. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a63/
[1] Beem J. K., Eherlich P. E., Easley K. L., Global Lorentzian geometry, Monographs and Textbooks in Pure and Applied Mathematics, 202, 2nd ed., Marcel Dekker, Inc., New York, 1996 | MR | Zbl
[2] Bernal A. N., Sánchez M., “On smooth Cauchy hypersurfaces and Geroch's splitting theorem”, Comm. Math. Phys., 243 (2003), 461–470, arXiv: gr-qc/0306108 | DOI | MR | Zbl
[3] Bernal A. N., Sánchez M., “Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes”, Comm. Math. Phys., 257 (2005), 43–50, arXiv: gr-qc/0401112 | DOI | MR | Zbl
[4] Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994 | MR | Zbl
[5] Connes A., “Gravity coupled with matter and the foundations of non-commutative geometry”, Comm. Math. Phys., 182 (1996), 155–176, arXiv: hep-th/9603053 | DOI | MR | Zbl
[6] Connes A., Marcolli M., Noncommutative geometry, quantum fields and motives, American Mathematical Society Colloquium Publications, 55, American Mathematical Society, Providence, RI, 2008 | MR | Zbl
[7] Erkekoğlu F., García-Río E., Kupeli D. N., “On level sets of Lorentzian distance function”, Gen. Relativity Gravitation, 35 (2003), 1597–1615 | DOI | MR | Zbl
[8] Gracia-Bondía J. M., Várilly J. C., Figueroa H., Elements of noncommutative geometry, Birkhäuser Boston, Inc., Boston, MA, 2001 | MR | Zbl
[9] Hencl S., “On the notions of absolute continuity for functions of several variables”, Fund. Math., 173 (2002), 175–189 | DOI | MR | Zbl
[10] Malý J., “Absolutely continuous functions of several variables”, J. Math. Anal. Appl., 231 (1999), 492–508 | DOI | MR | Zbl
[11] Moretti V., “Aspects of noncommutative Lorentzian geometry for globally hyperbolic spacetimes”, Rev. Math. Phys., 15 (2003), 1171–1217, arXiv: gr-qc/0203095 | DOI | MR | Zbl
[12] O'Neill B., Semi-Riemannian geometry. With applications to relativity, Pure and Applied Mathematics, 103, Academic Press, Inc., New York, 1983 | MR
[13] Paschke M., Sitarz A., Equivariant Lorentzian spectral triples, arXiv: math-ph/0611029
[14] Strohmaier A., “On noncommutative and pseudo-Riemannian geometry”, J. Geom. Phys., 56 (2006), 175–195, arXiv: math-ph/0110001 | DOI | MR | Zbl
[15] Wald R. M., General relativity, University of Chicago Press, Chicago, IL, 1984 | MR | Zbl