Global Eikonal Condition for Lorentzian Distance Function in Noncommutative Geometry
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Connes' noncommutative Riemannian distance formula is constructed in two steps, the first one being the construction of a path-independent geometrical functional using a global constraint on continuous functions. This paper generalizes this first step to Lorentzian geometry. We show that, in a globally hyperbolic spacetime, a single global timelike eikonal condition is sufficient to construct a path-independent Lorentzian distance function.
Keywords: noncommutative geometry; Lorentzian distance; eikonal inequality.
@article{SIGMA_2010_6_a63,
     author = {Nicolas Franco},
     title = {Global {Eikonal} {Condition} for {Lorentzian} {Distance} {Function} in {Noncommutative} {Geometry}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a63/}
}
TY  - JOUR
AU  - Nicolas Franco
TI  - Global Eikonal Condition for Lorentzian Distance Function in Noncommutative Geometry
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a63/
LA  - en
ID  - SIGMA_2010_6_a63
ER  - 
%0 Journal Article
%A Nicolas Franco
%T Global Eikonal Condition for Lorentzian Distance Function in Noncommutative Geometry
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a63/
%G en
%F SIGMA_2010_6_a63
Nicolas Franco. Global Eikonal Condition for Lorentzian Distance Function in Noncommutative Geometry. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a63/

[1] Beem J. K., Eherlich P. E., Easley K. L., Global Lorentzian geometry, Monographs and Textbooks in Pure and Applied Mathematics, 202, 2nd ed., Marcel Dekker, Inc., New York, 1996 | MR | Zbl

[2] Bernal A. N., Sánchez M., “On smooth Cauchy hypersurfaces and Geroch's splitting theorem”, Comm. Math. Phys., 243 (2003), 461–470, arXiv: gr-qc/0306108 | DOI | MR | Zbl

[3] Bernal A. N., Sánchez M., “Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes”, Comm. Math. Phys., 257 (2005), 43–50, arXiv: gr-qc/0401112 | DOI | MR | Zbl

[4] Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994 | MR | Zbl

[5] Connes A., “Gravity coupled with matter and the foundations of non-commutative geometry”, Comm. Math. Phys., 182 (1996), 155–176, arXiv: hep-th/9603053 | DOI | MR | Zbl

[6] Connes A., Marcolli M., Noncommutative geometry, quantum fields and motives, American Mathematical Society Colloquium Publications, 55, American Mathematical Society, Providence, RI, 2008 | MR | Zbl

[7] Erkekoğlu F., García-Río E., Kupeli D. N., “On level sets of Lorentzian distance function”, Gen. Relativity Gravitation, 35 (2003), 1597–1615 | DOI | MR | Zbl

[8] Gracia-Bondía J. M., Várilly J. C., Figueroa H., Elements of noncommutative geometry, Birkhäuser Boston, Inc., Boston, MA, 2001 | MR | Zbl

[9] Hencl S., “On the notions of absolute continuity for functions of several variables”, Fund. Math., 173 (2002), 175–189 | DOI | MR | Zbl

[10] Malý J., “Absolutely continuous functions of several variables”, J. Math. Anal. Appl., 231 (1999), 492–508 | DOI | MR | Zbl

[11] Moretti V., “Aspects of noncommutative Lorentzian geometry for globally hyperbolic spacetimes”, Rev. Math. Phys., 15 (2003), 1171–1217, arXiv: gr-qc/0203095 | DOI | MR | Zbl

[12] O'Neill B., Semi-Riemannian geometry. With applications to relativity, Pure and Applied Mathematics, 103, Academic Press, Inc., New York, 1983 | MR

[13] Paschke M., Sitarz A., Equivariant Lorentzian spectral triples, arXiv: math-ph/0611029

[14] Strohmaier A., “On noncommutative and pseudo-Riemannian geometry”, J. Geom. Phys., 56 (2006), 175–195, arXiv: math-ph/0110001 | DOI | MR | Zbl

[15] Wald R. M., General relativity, University of Chicago Press, Chicago, IL, 1984 | MR | Zbl