@article{SIGMA_2010_6_a61,
author = {Daniel N. Blaschke and Erwin Kronberger and Ren\'e I. P. Sedmik and Michael Wohlgenannt},
title = {Gauge {Theories} on {Deformed} {Spaces}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a61/}
}
TY - JOUR AU - Daniel N. Blaschke AU - Erwin Kronberger AU - René I. P. Sedmik AU - Michael Wohlgenannt TI - Gauge Theories on Deformed Spaces JO - Symmetry, integrability and geometry: methods and applications PY - 2010 VL - 6 UR - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a61/ LA - en ID - SIGMA_2010_6_a61 ER -
Daniel N. Blaschke; Erwin Kronberger; René I. P. Sedmik; Michael Wohlgenannt. Gauge Theories on Deformed Spaces. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a61/
[1] Schrödinger E., “Über die Unanwendbarkeit der Geometrie im Kleinen”, Naturwiss, 22 (1934), 518–520 | DOI
[2] Heisenberg W., “Über die in der Theorie der Elementarteilchen auftretende universelle Länge”, Ann. Physics, 32 (1938), 20–33 | DOI
[3] Snyder H. S., “Quantized space-time”, Phys. Rev., 71 (1947), 38–41 | DOI | MR | Zbl
[4] Snyder H. S., “The electromagnetic field in quantized space-time”, Phys. Rev., 72 (1947), 68–71 | DOI | MR | Zbl
[5] Doplicher S., Fredenhagen K., Roberts J. E., “The quantum structure of spacetime at the Planck scale and quantum fields”, Comm. Math. Phys., 172 (1995), 187–220, arXiv: hep-th/0303037 | DOI | MR | Zbl
[6] Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994 | MR | Zbl
[7] Connes A., “Noncommutative geometry and the standard model with neutrino mixing”, J. High Energy Phys., 2006:11 (2006), 081, 19 pp., arXiv: hep-th/0608226 | DOI | MR
[8] Barrett J. W., “Lorentzian version of the noncommutative geometry of the Standard Model of particle physics”, J. Math. Phys., 48 (2007), 012303, 7 pp., arXiv: hep-th/0608221 | DOI | MR
[9] Madore J., “The commutative limit of a matrix geometry”, J. Math. Phys., 32 (1991), 332–335 | DOI | MR | Zbl
[10] Madore J., “The fuzzy sphere”, Classical Quantum Gravity, 9 (1992), 69–87 | DOI | MR | Zbl
[11] Lukierski J., Ruegg H., Nowicki A., Tolstoi V. N., “$q$-deformation of Poincaré algebra”, Phys. Lett. B, 264 (1991), 331–338 | DOI | MR
[12] Majid S., Ruegg H., “Bicrossproduct structure of $\kappa$-Poincaré group and non-commutative geometry”, Phys. Lett. B, 334 (1994), 348–354, arXiv: hep-th/9405107 | DOI | MR | Zbl
[13] Dimitrijević M., Jonke L., Möller L., Tsouchnika E., Wess J., Wohlgenannt M., “Deformed field theory on $\kappa$-spacetime”, Eur. Phys. J. C, 31 (2003), 129–138, arXiv: hep-th/0307149 | DOI | MR | Zbl
[14] Reshetikhin N., Takhtadzhyan L., Faddeev L., “Quantization of Lie groups and Lie algebras”, Leningrad Math. J., 1 (1990), 193–225 | MR | Zbl
[15] Lorek A., Schmidke W. B., Wess J., “$\mathrm{SU}_q(2)$ covariant $\hat R$-matrices for reducible representations”, Lett. Math. Phys., 31 (1994), 279–288 | DOI | MR | Zbl
[16] Harvey J. A., Komaba lectures on noncommutative solitons and D-branes, arXiv: hep-th/0102076
[17] Szabo R. J., “Quantum field theory on noncommutative spaces”, Phys. Rep., 378 (2003), 207–299, arXiv: hep-th/0109162 | DOI | MR | Zbl
[18] Paniak L. D., Szabo R. J., Lectures on two-dimensional noncommutative gauge theory. I. Classical aspects, arXiv: hep-th/0302195
[19] Paniak L. D., Szabo R. J., “Lectures on two-dimensional noncommutative gauge theory”, Quantum Field Theory and Noncommutative Geometry, Lecture Notes in Phys., 662, Springer, Berlin, 2005, 205–237, arXiv: hep-th/0304268 | MR | Zbl
[20] Bahns D., Schwinger functions in noncommutative quantum field theory, arXiv: 0908.4537
[21] Grosse H., Lechner G., “Noncommutative deformations of Wightman quantum field theories”, J. High Energy Phys., 2008:9 (2008), 131, 29 pp., arXiv: 0808.3459 | DOI | MR
[22] Groenewold H. J., “On the principles of elementary quantum mechanics”, Physica, 12 (1946), 405–460 | DOI | MR | Zbl
[23] Moyal J. E., “Quantum mechanics as a statistical theory”, Proc. Cambridge Phil. Soc., 45 (1949), 99–124 | DOI | MR | Zbl
[24] Filk T., “Divergencies in a field theory on quantum space”, Phys. Lett. B, 376 (1996), 53–58 | DOI | MR | Zbl
[25] Minwalla S., Van Raamsdonk M., Seiberg N., “Noncommutative perturbative dynamics”, J. High Energy Phys., 2000:2 (2000), 020, 31 pp., arXiv: hep-th/9912072 | DOI | MR
[26] Chepelev I., Roiban R., “Convergence theorem for non-commutative Feynman graphs and renormalization”, J. High Energy Phys., 2001:3 (2001), 001, 72 pp., arXiv: hep-th/0008090 | DOI | MR
[27] Grosse H., Wulkenhaar R., “Renormalisation of $\phi^4$-theory on noncommutative $\mathbb R^2$ in the matrix base”, J. High Energy Phys., 2003:12 (2003), 019, 26 pp., arXiv: hep-th/0307017 | DOI | MR
[28] Grosse H., Wulkenhaar R., “Renormalisation of $\phi^4$-theory on noncommutative $\mathbb R^4$ in the matrix base”, Comm. Math. Phys., 256 (2005), 305–374, arXiv: hep-th/0401128 | DOI | MR | Zbl
[29] Langmann E., Szabo R. J., “Duality in scalar field theory on noncommutative phase spaces”, Phys. Lett. B, 533 (2002), 168–177, arXiv: hep-th/0202039 | DOI | MR | Zbl
[30] Magnen J., Rivasseau V., “Constructive $\phi^4$ field theory without tears”, Ann. Henri Poincaré, 9 (2008), 403–424, arXiv: 0706.2457 | DOI | MR | Zbl
[31] Gurau R., Magnen J., Rivasseau V., Tanasa A., “A translation-invariant renormalizable non-commutative scalar model”, Comm. Math. Phys., 287 (2009), 275–290, arXiv: 0802.0791 | DOI | MR | Zbl
[32] de Goursac A., Wallet J.-C., Wulkenhaar R., “Noncommutative induced gauge theory”, Eur. Phys. J. C, 51 (2007), 977–987, arXiv: hep-th/0703075 | DOI | MR | Zbl
[33] Wohlgenannt M., “Induced gauge theory on a noncommutative space”, Fortschr. Phys., 56 (2008), 547–551 | DOI | MR | Zbl
[34] Blaschke D. N., Grosse H., Schweda M., “Non-commutative U(1) gauge theory on $\mathbb R^4_\Theta$ with oscillator term and BRST symmetry”, Europhys. Lett., 79 (2007), 61002, 3 pp., arXiv: 0705.4205 | DOI | MR
[35] Blaschke D. N., Grosse H., Kronberger E., Schweda M., Wohlgenannt M., “Loop calculations for the non-commutative U(1) gauge field model with oscillator term”, Eur. Phys. J. C, 67 (2010), 575–582, arXiv: 0912.3642 | DOI
[36] Buric M., Grosse H., Madore J., “Gauge fields on noncommutative geometries with curvature”, J. High Energy Phys., 2010:7 (2010), 010, 18 pp., arXiv: 1003.2284 | DOI
[37] Buric M., Wohlgenannt M., “Geometry of the Grosse–Wulkenhaar model”, J. High Energy Phys., 2010:3 (2010), 053, 17 pp., arXiv: 0902.3408 | DOI | MR
[38] Blaschke D. N., Gieres F., Kronberger E., Schweda M., Wohlgenannt M., “Translation-invariant models for non-commutative gauge fields”, J. Phys. A: Math. Theor., 41 (2008), 252002, 7 pp., arXiv: 0804.1914 | DOI | MR | Zbl
[39] Blaschke D. N., Rofner A., Schweda M., Sedmik R. I. P., “One-loop calculations for a translation invariant non-commutative gauge model”, Eur. Phys. J. C, 62 (2009), 433–443, arXiv: 0901.1681 | DOI | MR | Zbl
[40] Blaschke D. N., Rofner A., Schweda M., Sedmik R. I. P., “Improved localization of a renormalizable non-commutative translation invariant U(1) gauge model”, Europhys. Lett., 86 (2009), 51002, 6 pp., arXiv: 0903.4811 | DOI | MR
[41] Blaschke D. N., Rofner A., Sedmik R. I. P., “One-loop calculations and detailed analysis of the localized non-commutative $1/p^2$ $U(1)$ gauge model”, SIGMA, 6 (2010), 037, 20 pp., arXiv: 0908.1743 | DOI | MR | Zbl
[42] Vilar L. C. Q., Ventura O. S., Tedesco D. G., Lemes V. E. R., “On the renormalizability of noncommutative U(1) gauge theory – an algebraic approach”, J. Phys. A: Math. Theor., 43 (2010), 135401, 13 pp., arXiv: 0902.2956 | DOI | MR | Zbl
[43] Blaschke D. N., Rofner A., Sedmik R. I. P., Wohlgenannt M., On non-commutative $U_\star(1)$ gauge models and renormalizability, arXiv: 0912.2634
[44] Gribov V. N., “Quantization of non-Abelian gauge theories”, Nuclear Phys. B, 139 (1978), 1–19 | DOI | MR
[45] Zwanziger D., “Local and renormalizable action from the Gribov horizon”, Nuclear Phys. B, 323 (1989), 513–544 | DOI | MR
[46] Zwanziger D., “Renormalizability of the critical limit of lattice gauge theory by BRS invariance”, Nuclear Phys. B, 399 (1993), 477–513 | DOI | MR
[47] Baulieu L., Sorella S. P., “Soft breaking of BRST invariance for introducing non-perturbative infrared effects in a local and renormalizable way”, Phys. Lett. B, 671 (2009), 481–485, arXiv: 0808.1356 | DOI | MR
[48] Seiberg N., Witten E., “String theory and noncommutative geometry”, J. High Energy Phys., 1999:9 (1999), 032, 93 pp., arXiv: hep-th/9908142 | DOI | MR
[49] Jurčo B., Möller L., Schraml S., Schupp P., Wess J., “Construction of non-Abelian gauge theories on noncommutative spaces”, Eur. Phys. J. C, 21 (2001), 383–388, arXiv: hep-th/0104153 | DOI | MR | Zbl
[50] Barnich G., Brandt F., Grigoriev M., “Local BRST cohomology and Seiberg–Witten maps in noncommutative Yang–Mills theory”, Nuclear Phys. B, 677 (2004), 503–534, arXiv: hep-th/0308092 | DOI | MR | Zbl
[51] Calmet X., Jurčo B., Schupp P., Wess J., Wohlgenannt M., “The standard model on non-commutative space-time”, Eur. Phys. J. C, 23 (2002), 363–376, arXiv: hep-ph/0111115 | DOI | MR | Zbl
[52] Melić B., Passek-Kumerički K., Trampetić J., Schupp P., Wohlgenannt M., “The standard model on non-commutative space-time: strong interactions included”, Eur. Phys. J. C, 42 (2005), 499–504, arXiv: hep-ph/0503064 | DOI | MR | Zbl
[53] Melić B., Passek-Kumerički K., Trampetić J., Schupp P., Wohlgenannt M., “The standard model on non-commutative space-time: electroweak currents and Higgs sector”, Eur. Phys. J. C, 42 (2005), 483–497, arXiv: hep-ph/0502249 | DOI | MR | Zbl
[54] Burić M., Radovanović V., Trampetić J., “The one-loop renormalization of the gauge sector in the $\theta$-expanded noncommutative standard model”, J. High Energy Phys., 2007:3 (2007), 030, 17 pp., arXiv: hep-th/0609073 | DOI | MR
[55] Burić M., Radovanović V., “The one-loop effective action for quantum electrodynamics on noncommutative space”, J. High Energy Phys., 2002:10 (2002), 074, 17 pp., arXiv: hep-th/0208204 | DOI | MR
[56] Bichl A. A., Grimstrup J. M., Grosse H., Popp L., Schweda M., Wulkenhaar R., “Renormalization of the noncommutative photon self-energy to all orders via Seiberg–Witten map”, J. High Energy Phys., 2001:6 (2001), 013, 15 pp., arXiv: hep-th/0104097 | DOI | MR
[57] Wulkenhaar R., “Non-renormalizability of $\theta$-expanded non-commutative QED”, J. High Energy Phys., 2002:3 (2002), 024, 35 pp., arXiv: hep-th/0112248 | DOI | MR
[58] Martín C. P., Tamarit C., “Renormalisability of the matter determinants in noncommutative gauge theory in the enveloping-algebra formalism”, Phys. Lett. B, 658 (2008), 170–173, arXiv: 0706.4052 | DOI | MR
[59] Tamarit C., Trampetić J., “Noncommutative fermions and quarkonia decays”, Phys. Rev. D, 79 (2009), 025020, 15 pp., arXiv: 0812.1731 | DOI
[60] Martín C. P., Tamarit C., “Renormalisability of noncommutative GUT inspired field theories with anomaly safe groups”, J. High Energy Phys., 2009:12 (2009), 042, 18 pp., arXiv: 0910.2677 | DOI
[61] Trampetić J., “Rare and forbidden decays”, Acta Phys. Polon. B, 33 (2002), 4317–4372, arXiv: hep-ph/0212309
[62] Melić B., Passek-Kumerički K., Trampetić J., “$K\to\pi\gamma$ decay and space-time noncommutativity”, Phys. Rev. D, 72 (2005), 057502, 3 pp., arXiv: hep-ph/0507231 | DOI
[63] Burić M., Latas D., Radovanović V., Trampetić J., “Nonzero $Z\to\gamma\gamma$ decays in the renormalizable gauge sector of the noncommutative standard model”, Phys. Rev. D, 75 (2007), 097701, 4 pp. | DOI | MR
[64] Schupp P., Trampetić J., Wess J., Raffelt G., “The photon neutrino interaction in non-commutative gauge field theory and astrophysical bounds”, Eur. Phys. J. C, 36 (2004), 405–410, arXiv: hep-ph/0212292 | DOI
[65] Horvat R., Trampetić J., “Constraining spacetime noncommutativity with primordial nucleosynthesis”, Phys. Rev. D, 79 (2009), 087701, 4 pp., arXiv: 0901.4253 | DOI
[66] Schupp P., You J., “UV/IR mixing in noncommutative QED defined by Seiberg–Witten map”, J. High Energy Phys., 2008:8 (2008), 107, 10 pp., arXiv: 0807.4886 | DOI | MR
[67] Raasakka M., Tureanu A., “On UV/IR mixing via Seiberg–Witten map for noncommutative QED”, Phys. Rev. D, 81 (2010), 125004, 8 pp., arXiv: 1002.4531 | DOI
[68] Slavnov A. A., “Consistent non-commutative quantum gauge theories?”, Phys. Lett. B, 565 (2003), 246–252, arXiv: hep-th/0304141 | DOI | MR | Zbl
[69] Slavnov A. A., “A gauge-invariant U(1)-model on a noncommutative plane in an axial gauge”, Theoret. and Math. Phys., 140 (2004), 1222–1228 | DOI | MR | Zbl
[70] Blaschke D. N., Hohenegger S., Schweda M., “Divergences in non-commutative gauge theories with the Slavnov term”, J. High Energy Phys., 2005:11 (2005), 041, 29 pp., arXiv: hep-th/0510100 | DOI | MR
[71] Blaschke D. N., Gieres F., Piguet O., Schweda M., “A vector supersymmetry in noncommutative U(1) gauge theory with the Slavnov term”, J. High Energy Phys., 2006:5 (2006), 059, 16 pp., arXiv: hep-th/0604154 | DOI | MR | Zbl
[72] Blaschke D. N., Hohenegger S., “A generalization of Slavnov-extended non-commutative gauge theories”, J. High Energy Phys., 2007:8 (2007), 032, 21 pp., arXiv: 0705.3007 | DOI | MR
[73] Dimitrijević M., Meyer F., Möller L., Wess J., “Gauge theories on the $\kappa$-Minkowski spacetime”, Eur. Phys. J. C, 36 (2004), 117–126, arXiv: hep-th/0310116 | DOI | MR
[74] Dimitrijević M., Jonke L., Möller L., “U(1) gauge field theory on $\kappa$-Minkowski space”, J. High Energy Phys., 2005:9 (2005), 068, 15 pp., arXiv: hep-th/0504129 | DOI | MR
[75] Bolokhov P. A., Pospelov M., “Low-energy constraints on $\kappa$-Minkowski extension of the Standard Model”, Phys. Lett. B, 677 (2009), 160–163, arXiv: 0807.1522 | DOI
[76] Harikumar E., “Maxwell's equations on the $\kappa$-Minkowski spacetime and electric-magnetic duality”, Europhys. Lett., 90 (2010), 21001, 6 pp., arXiv: 1002.3202 | DOI
[77] Klimčík C., “Gauge theories on the noncommutative sphere”, Comm. Math. Phys., 199 (1998), 257–279, arXiv: hep-th/9710153 | DOI | MR | Zbl
[78] Balachandran A. P., Vaidya S., “Instantons and chiral anomaly in fuzzy physics”, Internat. J. Modern Phys. A, 16 (2001), 17–39, arXiv: hep-th/9910129 | DOI | MR | Zbl
[79] Karabali D., Nair V. P., Polychronakos A. P., “Spectrum of Schrödinger field in a noncommutative magnetic monopole”, Nuclear Phys. B, 627 (2002), 565–579, arXiv: hep-th/0111249 | DOI | MR | Zbl
[80] Iso S., Kimura Y., Tanaka K., Wakatsuki K., “Noncommutative gauge theory on fuzzy sphere from matrix model”, Nuclear Phys. B, 604 (2001), 121–147, arXiv: hep-th/0101102 | DOI | MR | Zbl
[81] Steinacker H., “Quantized gauge theory on the fuzzy sphere as random matrix model”, Nuclear Phys. B, 679 (2004), 66–98, arXiv: hep-th/0307075 | DOI | MR | Zbl
[82] Castro-Villarreal P., Delgadillo-Blando R., Ydri B., “A gauge-invariant UV-IR mixing and the corresponding phase transition for U(1) fields on the fuzzy sphere”, Nuclear Phys. B, 704 (2005), 111–153, arXiv: hep-th/0405201 | DOI | MR | Zbl
[83] O'Connor D., Ydri B., “Monte Carlo simulation of a NC gauge theory on the fuzzy sphere”, J. High Energy Phys., 2006:11 (2006), 016, 37 pp., arXiv: hep-lat/0606013 | DOI | MR
[84] Alexanian G., Balachandran A. P., Immirzi G., Ydri B., “Fuzzy $\mathbb{C}P^2$”, J. Geom. Phys., 42 (2002), 28–53, arXiv: hep-th/0103023 | DOI | MR | Zbl
[85] Grosse H., Steinacker H., “Finite gauge theory on fuzzy $\mathbb{C}P^2$”, Nuclear Phys. B, 707 (2005), 145–198, arXiv: hep-th/0407089 | DOI | MR | Zbl
[86] Boulatov D. V., “Quantum deformation of lattice gauge theory”, Comm. Math. Phys., 186 (1997), 295–322, arXiv: hep-th/9604117 | DOI | MR | Zbl
[87] Majid S., “Diagrammatics of braided group gauge theory”, J. Knot Theory Ramifications, 8 (1999), 731–771, arXiv: q-alg/9603018 | DOI | MR | Zbl
[88] Mesref L., “A map between $q$-deformed noncommutative and ordinary gauge theories”, New J. Phys., 5 (2003), 7.1–7.9, arXiv: hep-th/0209005 | DOI | MR
[89] Schraml S., Non-Abelian gauge theory on $q$-quantum spaces, arXiv: hep-th/0208173
[90] Meyer F., Steinacker H., “Gauge field theory on the $E_q(2)$-covariant plane”, Internat. J. Modern Phys. A, 19 (2004), 3349–3375, arXiv: hep-th/0309053 | DOI | MR | Zbl
[91] Ishibashi N., Kawai H., Kitazawa Y., Tsuchiya A., “A large-$N$ reduced model as superstring”, Nuclear Phys. B, 498 (1997), 467–491, arXiv: hep-th/9612115 | DOI | MR | Zbl
[92] Jack I., Jones D. R. T., “Ultra-violet finiteness in noncommutative supersymmetric theories”, New J. Phys., 3 (2001), 19.1–19.8, arXiv: hep-th/0109195 | DOI | MR | Zbl
[93] Matusis A., Susskind L., Toumbas N., “The IR/UV connection in the non-commutative gauge theories”, J. High Energy Phys., 2000:12 (2000), 002, 18 pp., arXiv: hep-th/0002075 | DOI | MR
[94] Sheikh-Jabbari M. M., “One loop renormalizability of supersymmetric Yang–Mills theories on noncommutative two-torus”, J. High Energy Phys., 1999:6 (1999), 015, 16 pp., arXiv: hep-th/9903107 | DOI | MR
[95] Girotti H. O., Gomes M., Rivelles V. O., da Silva A. J., “A consistent noncommutative field theory: the Wess–Zumino model”, Nuclear Phys. B, 587 (2000), 299–310, arXiv: hep-th/0005272 | DOI | MR | Zbl
[96] Bichl A. A., Grimstrup J., Grosse H., Popp L., Schweda M., Wulkenhaar R., “The superfield formalism applied to the noncommutative Wess–Zumino model”, J. High Energy Phys., 2000:10 (2000), 046, 19 pp., arXiv: hep-th/0007050 | DOI | MR
[97] Zanon D., “Noncommutative $N=1,2$ super $\mathrm U(N)$ Yang–Mills: UV/IR mixing and effective action results at one loop”, Phys. Lett. B, 502 (2001), 265–273, arXiv: hep-th/0012009 | DOI | MR | Zbl
[98] Ferrara S., Lledó M. A., “Some aspects of deformations of supersymmetric field theories”, J. High Energy Phys., 2000:5 (2000), 008, 22 pp., arXiv: hep-th/0002084 | DOI | MR
[99] Bichl A. A., Ertl M., Gerhold A., Grimstrup J. M., Popp L., Putz V., Schweda M., Grosse H., Wulkenhaar R., “Non-commutative U(1) super-Yang–Mills theory: perturbative self-energy corrections”, Internat. J. Modern Phys. A, 19 (2004), 4231–4249, arXiv: hep-th/0203141 | DOI | MR | Zbl
[100] Ooguri H., Vafa C., “The $C$-deformation of gluino and non-planar diagrams”, Adv. Theor. Math. Phys., 7 (2003), 53–85, arXiv: hep-th/0302109 | MR
[101] Araki T., Ito K., Ohtsuka A., “Supersymmetric gauge theories on noncommutative superspace”, Phys. Lett. B, 573 (2003), 209–216, arXiv: hep-th/0307076 | DOI | MR | Zbl
[102] Ooguri H., Vafa C., “Gravity induced $C$-deformation”, Adv. Theor. Math. Phys., 7 (2004), 405–417, arXiv: hep-th/0303063 | MR
[103] Ferrari A. F., Girotti H. O., Gomes M., Petrov A. Yu., Ribeiro A. A., Rivelles V. O., da Silva A. J., “Towards a consistent noncommutative supersymmetric Yang–Mills theory: superfield covariant analysis”, Phys. Rev. D, 70 (2004), 085012, 11 pp., arXiv: hep-th/0407040 | DOI | MR
[104] Martín C. P., Tamarit C., “Noncommutative $N=1$ super Yang–Mills, the Seiberg–Witten map and UV divergences”, J. High Energy Phys., 2009:11 (2009), 092, 28 pp., arXiv: 0907.2437 | DOI
[105] Szabo R. J., “Symmetry, gravity and noncommutativity”, Classical Quantum Gravity, 23 (2006), R199–R242, arXiv: hep-th/0606233 | DOI | MR | Zbl
[106] Rivelles V. O., “Noncommutative field theories and gravity”, Phys. Lett. B, 558 (2003), 191–196, arXiv: hep-th/0212262 | DOI | MR | Zbl
[107] Yang H. S., “Exact Seiberg–Witten map and induced gravity from noncommutativity”, Modern Phys. Lett. A, 21 (2006), 2637–2647, arXiv: hep-th/0402002 | DOI | MR | Zbl
[108] Banerjee R., Yang H. S., “Exact Seiberg–Witten map, induced gravity and topological invariants in non-commutative field theories”, Nuclear Phys. B, 708 (2005), 434–450, arXiv: hep-th/0404064 | DOI | MR | Zbl
[109] Yang H. S., “Instantons and emergent geometry”, Europhys. Lett., 88 (2009), 31002, 6 pp., arXiv: hep-th/0608013 | DOI
[110] Steinacker H., “Emergent gravity from noncommutative gauge theory”, J. High Energy Phys., 2007:12 (2007), 049, 36 pp., arXiv: 0708.2426 | DOI | MR
[111] Grosse H., Steinacker H., Wohlgenannt M., “Emergent gravity, matrix models and UV/IR mixing”, J. High Energy Phys., 2008:4 (2008), 023, 30 pp., arXiv: 0802.0973 | DOI | MR
[112] Klammer D., Steinacker H., “Fermions and emergent noncommutative gravity”, J. High Energy Phys., 2008:8 (2008), 074, 27 pp., arXiv: 0805.1157 | DOI | MR
[113] Steinacker H., “Covariant field equations, gauge fields and conservation laws from Yang–Mills matrix models”, J. High Energy Phys., 2009:2 (2009), 044, 30 pp., arXiv: 0812.3761 | DOI | MR
[114] Freidel L., Livine E. R., “Ponzano–Regge model revisited. III. Feynman diagrams and effective field theory”, Classical Quantum Gravity, 23 (2006), 2021–2061, arXiv: hep-th/0502106 | DOI | MR | Zbl
[115] Freidel L., Livine E. R., “3D quantum gravity and effective noncommutative quantum field theory”, Phys. Rev. Lett., 96 (2006), 221301, 4 pp., arXiv: hep-th/0512113 | DOI | MR
[116] Gitman D. M., Vassilevich D. V., “Space-time noncommutativity with a bifermionic parameter”, Modern Phys. Lett. A, 23 (2008), 887–893, arXiv: hep-th/0701110 | DOI | MR | Zbl
[117] Terashima S., “A note on superfields and noncommutative geometry”, Phys. Lett. B, 482 (2000), 276–282, arXiv: hep-th/0002119 | DOI | MR | Zbl
[118] Matsubara K., “Restrictions on gauge groups in noncommutative gauge theory”, Phys. Lett. B, 482 (2000), 417–419, arXiv: hep-th/0003294 | DOI | MR | Zbl
[119] Bars I., Sheikh-Jabbari M. M., Vasiliev M. A., “Noncommutative ${\rm o}_*(N)$ and ${\rm usp}_*(2N)$ algebras and the corresponding gauge field theories”, Phys. Rev. D, 64 (2001), 086004, 13 pp., arXiv: hep-th/0103209 | DOI | MR
[120] Chaichian M., Prešnajder P., Sheikh-Jabbari M. M., Tureanu A., “Noncommutative gauge field theories: a no-go theorem”, Phys. Lett. B, 526 (2002), 132–136, arXiv: hep-th/0107037 | DOI | MR | Zbl
[121] Bonora L., Schnabl M., Sheikh-Jabbari M. M., Tomasiello A., “Noncommutative $\mathrm{SO}(n)$ and $\mathrm{Sp}(n)$ gauge theories”, Nuclear Phys. B, 589 (2000), 461–474, arXiv: hep-th/0006091 | DOI | MR | Zbl
[122] Bietenholz W., Nishimura J., Susaki Y., Volkholz J., “A non-perturbative study of 4d U(1) non-commutative gauge theory – the fate of one-loop instability”, J. High Energy Phys., 2006:10 (2006), 042, 31 pp., arXiv: hep-th/0608072 | DOI | MR | Zbl
[123] Nishimura J., Bietenholz W., Susaki Y., Volkholz J., “A non-perturbative study of non-commutative U(1) gauge theory”, Progr. Theor. Phys. Suppl., 171 (2007), 178–183, arXiv: 0706.3244 | DOI
[124] Aref'eva I. Y., Belov D. M., Koshelev A. S., Rytchkov O. A., “UV/IR mixing for noncommutative complex scalar field theory interacting with gauge fields”, Nuclear Phys. Proc. Suppl., 102 (2001), 11–17, arXiv: hep-th/0003176 | DOI | MR
[125] Micu A., Sheikh Jabbari M. M., “Noncommutative $\Phi^4$ theory at two loops”, J. High Energy Phys., 2001:1 (2001), 025, 45 pp., arXiv: hep-th/0008057 | DOI | MR
[126] Grimstrup J. M., Grosse H., Popp L., Putz V., Schweda M., Wickenhauser M., Wulkenhaar R., “IR-singularities in noncommutative perturbative dynamics?”, Europhys. Lett., 67 (2004), 186–190, arXiv: hep-th/0202093 | DOI | MR
[127] Martín C. P., Sánchez-Ruiz D., “One-loop UV divergent structure of $\mathrm U(1)$ Yang–Mills theory on noncommutative $\mathbb R^4$”, Phys. Rev. Lett., 83 (1999), 476–479, arXiv: hep-th/9903077 | DOI | MR | Zbl
[128] Hayakawa M., “Perturbative analysis on infrared aspects of noncommutative QED on $\mathbb R^4$”, Phys. Lett. B, 478 (2000), 394–400, arXiv: hep-th/9912094 | DOI | MR | Zbl
[129] Hayakawa M., Perturbative analysis on infrared and ultraviolet aspects of noncommutative QED on $\mathbb R ^4$, arXiv: hep-th/9912167
[130] Grosse H., Krajewski T., Wulkenhaar R., Renormalization of noncommutative Yang–Mills theories: a simple example, arXiv: hep-th/0001182
[131] Martín C. P., Sánchez-Ruiz D., “The BRS invariance of noncommutative $\mathrm U(N)$ Yang–Mills theory at the one-loop level”, Nuclear Phys. B, 598 (2001), 348–370, arXiv: hep-th/0012024 | DOI | MR | Zbl
[132] Liao Y., “One loop renormalization of spontaneously broken U(2) gauge theory on noncommutative spacetime”, J. High Energy Phys., 2001:11 (2001), 067, 39 pp., arXiv: hep-th/0110112 | DOI | MR
[133] Nakajima T., UV/IR mixing and anomalies in noncommutative gauge theories, arXiv: hep-th/0205058
[134] Ruiz Ruiz F., “Gauge-fixing independence of IR divergences in non-commutative U(1), perturbative tachyonic instabilities and supersymmetry”, Phys. Lett. B, 502 (2001), 274–278, arXiv: hep-th/0012171 | DOI | MR | Zbl
[135] Attems M., Blaschke D. N., Ortner M., Schweda M., Stricker S., Weiretmayr M., “Gauge independence of IR singularities in non-commutative QFT – and interpolating gauges”, J. High Energy Phys., 2005:7 (2005), 071, 10 pp., arXiv: hep-th/0506117 | DOI | MR
[136] Van Raamsdonk M., “The meaning of infrared singularities in noncommutative gauge theories”, J. High Energy Phys., 2001:11 (2001), 006, 17 pp., arXiv: hep-th/0110093 | DOI | MR
[137] Armoni A., “Comments on perturbative dynamics of non-commutative Yang–Mills theory”, Nuclear Phys. B, 593 (2001), 229–242, arXiv: hep-th/0005208 | DOI | MR | Zbl
[138] Armoni A., Lopez E., “UV/IR mixing via closed strings and tachyonic instabilities”, Nuclear Phys. B, 632 (2002), 240–256, arXiv: hep-th/0110113 | DOI | MR | Zbl
[139] Martín C. P., Ruiz Ruiz F., “Paramagnetic dominance, the sign of the beta function and UV/IR mixing in non-commutative U(1)”, Nuclear Phys. B, 597 (2001), 197–227, arXiv: hep-th/0007131 | DOI | Zbl
[140] Landi G., Lizzi F., Szabo R. J., “String geometry and the noncommutative torus”, Comm. Math. Phys., 206 (1999), 603–637, arXiv: hep-th/9806099 | DOI | MR | Zbl
[141] Landi G., Lizzi F., Szabo R. J., “From large $N$ matrices to the noncommutative torus”, Comm. Math. Phys., 217 (2001), 181–201, arXiv: hep-th/9912130 | DOI | MR | Zbl
[142] Krajewski T., Wulkenhaar R., “Perturbative quantum gauge fields on the noncommutative torus”, Internat. J. Modern Phys. A, 15 (2000), 1011–1029, arXiv: hep-th/9903187 | DOI | MR | Zbl
[143] Chaichian M., Prešnajder P., Sheikh-Jabbari M. M., Tureanu A., “Non-commutative standard model: model building”, Eur. Phys. J. C, 29 (2003), 413–432, arXiv: hep-th/0107055 | DOI | MR | Zbl
[144] Jurčo B., Schupp P., Wess J., “Noncommutative gauge theory for Poisson manifolds”, Nuclear Phys. B, 584 (2000), 784–794, arXiv: hep-th/0005005 | DOI | MR | Zbl
[145] Wohlgenannt M., Introduction to a non-commutative version of the standard model, arXiv: hep-th/0302070
[146] Aschieri P., Jurčo B., Schupp P., Wess J., “Non-commutative GUTs, standard model and $C$, $P$, $T$”, Nuclear Phys. B, 651 (2003), 45–70, arXiv: hep-th/0205214 | DOI | MR | Zbl
[147] Möller L., “Second order of the expansions of action functionals of the noncommutative standard model”, J. High Energy Phys., 2004:10 (2004), 063, 20 pp., arXiv: hep-th/0409085 | DOI | MR
[148] Alboteanuv A., Ohl T., Ruckl R., “The noncommutative standard model at $O(\theta^2)$”, Phys. Rev. D, 76 (2007), 105018, 10 pp., arXiv: 0707.3595
[149] Trampetic J., Wohlgenannt M., “Comment on the 2nd order Seiberg–Witten maps”, Phys. Rev. D, 76 (2007), 127703, 4 pp., arXiv: 0710.2182 | DOI | MR
[150] Bichl A. A., Grimstrup J. M., Popp L., Schweda M., Wulkenhaar R., Deformed QED via Seiberg–Witten map, arXiv: hep-th/0102103
[151] Carlson C. E., Carone C. D., Zobin N., “Noncommutative gauge theory without Lorentz violation”, Phys. Rev. D, 66 (2002), 075001, 8 pp., arXiv: hep-th/0206035 | DOI
[152] Martín C. P., Sánchez-Ruiz D., Tamarit C., “The noncommutative U(1) Higgs–Kibble model in the enveloping-algebra formalism and its renormalizability”, J. High Energy Phys., 2007:2 (2007), 065, 23 pp., arXiv: hep-th/0612188 | DOI | MR
[153] Burić M., Latas D., Radovanović V., “Renormalizability of noncommutative $\mathrm{SU}(N)$ gauge theory”, J. High Energy Phys., 2006:2 (2006), 046, 13 pp., arXiv: hep-th/0510133 | DOI | MR
[154] Latas D., Radovanović V., Trampetić J., “Non-commutative $SU(N)$ gauge theories and asymptotic freedom”, Phys. Rev. D, 76 (2007), 085006, 7 pp., arXiv: hep-th/0703018 | DOI | MR
[155] Burić M., Latas D., Radovanović V., Trampetić J., “Absence of the 4$\psi$ divergence in noncommutative chiral models”, Phys. Rev. D, 77 (2008), 045031, 7 pp., arXiv: 0711.0887 | DOI
[156] Martín C. P., C. Tamarit, “Noncommutative GUT inspired theories and the UV finiteness of the fermionic four point functions”, Phys. Rev. D, 80 (2009), 065023, 6 pp., arXiv: 0907.2464 | DOI
[157] Banerjee R., Ghosh S., “Seiberg–Witten map and the axial anomaly in non-commutative field theory”, Phys. Lett. B, 533 (2002), 162–167, arXiv: hep-th/0110177 | DOI | MR | Zbl
[158] Martín C. P., Tamarit C., “Noncommutative ${\rm SU}(N)$ theories, the axial anomaly, Fujikawa's method and the Atiyah–Singer index”, Phys. Lett. B, 620 (2005), 187–194, arXiv: hep-th/0504171 | DOI | MR
[159] Brandt F., Martín C. P., Ruiz Ruiz F., “Anomaly freedom in Seiberg–Witten noncommutative gauge theories”, J. High Energy Phys., 2003:7 (2003), 068, 26 pp., arXiv: hep-th/0307292 | DOI | MR
[160] Hewett J. L., Petriello F. J., Rizzo T. G., “Signals for non-commutative interactions at linear colliders”, Phys. Rev. D, 64 (2001), 075012, 23 pp., arXiv: hep-ph/0010354 | DOI
[161] Carlson C. E., Carone C. D., Lebed R. F., “Bounding noncommutative QCD”, Phys. Lett. B, 518 (2001), 201–206, arXiv: hep-ph/0107291 | DOI | Zbl
[162] Kersting N., “$(g-2)_\mu$ from noncommutative geometry”, Phys. Lett. B, 527 (2002), 115–118 pp., arXiv: hep-ph/0109224 | DOI | MR
[163] Carone C. D., “Phenomenology of noncommutative field theories”, J. Phys. Conf. Ser., 37 (2006), 96–106, arXiv: hep-ph/0409348 | DOI | MR
[164] Minkowski P., Schupp P., Trampetić J., “Neutrino dipole moments and charge radii in non-commutative space-time”, Eur. Phys. J. C, 37 (2004), 123–128, arXiv: hep-th/0302175 | DOI
[165] Emery S., Krüger M., Rant J., Schweda M., Sommer T., “Two-dimensional BF model quantized in the axial gauge”, Nuovo Cimento A, 111 (1998), 1321–1335, arXiv: hep-th/9609240 | MR
[166] Del Cima O. M., Landsteiner K., Schweda M., “Twisted $N = 4$ SUSY algebra in topological models of Schwarz type”, Phys. Lett. B, 439 (1998), 289–300, arXiv: hep-th/9806137 | DOI | MR
[167] Del Cima O. M., Grimstrup J. M., Schweda M., “On the finiteness of a new topological model in $D=3$”, Phys. Lett. B, 463 (1999), 48–56, arXiv: hep-th/9906146 | DOI | MR | Zbl
[168] Gieres F., Grimstrup J. M., Pisar T., Schweda M., “Vector supersymmetry in topological field theories”, J. High Energy Phys., 2000:6 (2000), 018, 22 pp., arXiv: hep-th/0002167 | DOI | MR | Zbl
[169] Batalin I. A., Vilkovisky G. A., “Gauge algebra and quantization”, Phys. Lett. B, 102 (1981), 27–31 | DOI | MR
[170] Batalin I. A., Vilkovisky G. A., “Quantization of gauge theories with linearly dependent generators”, Phys. Rev. D, 28 (1983), 2567–2582 | DOI | MR
[171] Piguet O., Sorella S. P., Algebraic renormalization. Perturbative renormalization, symmetries and anomalies, Lecture Notes in Physics. New Series m: Monographs, 28, Springer-Verlag, Berlin, 1995 | MR
[172] Fischer A., Szabo R. J., “Duality covariant quantum field theory on noncommutative Minkowski space”, J. High Energy Phys., 2009:2 (2009), 031, 36 pp., arXiv: 0810.1195 | DOI | MR
[173] Rivasseau V., Vignes-Tourneret F., Wulkenhaar R., “Renormalization of noncommutative $\phi^4$-theory by multi-scale analysis”, Comm. Math. Phys., 262 (2006), 565–594, arXiv: hep-th/0501036 | DOI | MR | Zbl
[174] Disertori M., Rivasseau V., “Two- and three-loop beta function of non-commutative $\Phi_4^4$ theory”, Eur. Phys. J. C, 50 (2007), 661–671, arXiv: hep-th/0610224 | DOI
[175] Landau L. D., “On the quantum theory of fields”, Niels Bohr and the Development of Physics, McGraw-Hill Book Co., New York, N.Y., 1955, 52–69 | MR
[176] Grosse H., Wulkenhaar R., “The $\beta$-function in duality-covariant non-commutative $\phi^4$-theory”, Eur. Phys. J. C, 35 (2004), 277–282, arXiv: hep-th/0402093 | DOI | MR | Zbl
[177] Disertori M., Gurau R., Magnen J., Rivasseau V., “Vanishing of beta function of non-commutative $\Phi_4^4$ theory to all orders”, Phys. Lett. B, 649 (2007), 95–102, arXiv: hep-th/0612251 | DOI | MR
[178] Blaschke D. N., Gieres F., Kronberger E., Reis T., Schweda M., Sedmik R. I. P., “Quantum corrections for translation-invariant renormalizable non-commutative $\phi^4$ theory”, J. High Energy Phys., 2008:11 (2008), 074, 16 pp., arXiv: 0807.3270 | DOI | MR | Zbl
[179] Madore J., An introduction to noncommutative differential geometry and its physical applications, London Mathematical Society Lecture Note Series, 257, 2nd ed., Cambridge University Press, Cambridge, 1999 | MR | Zbl
[180] Rivasseau V., From perturbative to constructive renormalization, Princeton Series in Physics, Princeton University Press, Princeton, NJ, 1991 | MR
[181] Sobreiro R. F., Sorella S. P., Introduction to the Gribov ambiguities in Euclidean Yang–Mills theories, arXiv: hep-th/0504095
[182] Grumiller D., Rebhan A., Vassilevich D. (eds.), Fundamental interactions – a memorial volume for Wolfgang Kummer, World Scientific, Singapore, 2009
[183] van Baal P., QCD in a finite volume, arXiv: hep-ph/0008206
[184] Dudal D., Sorella S. P., Vandersickel N., Verschelde H., “Gribov no-pole condition, Zwanziger horizon function, Kugo–Ojima confinement criterion, boundary conditions, BRST breaking and all that”, Phys. Rev. D, 79 (2009), 121701, 5 pp., arXiv: 0904.0641 | DOI | MR
[185] Dudal D., Gracey J., Sorella S. P., Vandersickel N., Verschelde H., “A refinement of the Gribov–Zwanziger approach in the Landau gauge: infrared propagators in harmony with the lattice results”, Phys. Rev. D, 78 (2008), 065047, 30 pp., arXiv: 0806.4348 | DOI
[186] Ryder L. H., Quantum field theory, 2nd ed., Cambridge University Press, Cambridge, 1996 | MR
[187] Boresch A., Emery S., Moritsch O., Schweda M., Sommer T., Zerrouki H., Applications of noncovariant gauges in the algebraic renormalization procedure, World Scientific Publishing Co., Inc., River Edge, NJ, 1998 | MR | Zbl
[188] Sedmik R. I. P., On the development of non-commutative translation-invariant quantum gauge field models, PhD Thesis, Vienna University of Technology, 2009 available at http://media.obvsg.at/AC07806220
[189] Aigner F., Hillbrand M., Knapp J., Milovanovic G., Putz V., Schöfbeck R., Schweda M., “Technical remarks and comments on the UV/IR-mixing problem of a noncommutative scalar quantum field theory”, Czechoslovak J. Phys., 54 (2004), 711–719, arXiv: hep-th/0302038 | DOI | MR
[190] Denk S., Schweda M., “Time ordered perturbation theory for non-local interactions: applications to NCQFT”, J. High Energy Phys., 2003:9 (2003), 032, 22 pp., arXiv: hep-th/0306101 | DOI | MR
[191] Bahns D., Doplicher S., Fredenhagen K., Piacitelli G., “Ultraviolet finite quantum field theory on quantum spacetime”, Comm. Math. Phys., 237 (2003), 221–241, arXiv: hep-th/0301100 | DOI | MR | Zbl
[192] Blaschke D. N., Kronberger E., Rofner A., Schweda M., Sedmik R. I. P., Wohlgenannt M., “On the problem of renormalizability in non-commutative gauge field models – a critical review”, Fortschr. Phys., 58 (2010), 364–372, arXiv: 0908.0467 | DOI | MR | Zbl
[193] Rofner A., Investigations on the renormalizability of a non-commutative $U(1)$ gauge theory, PhD Thesis, Vienna University of Technology, 2009 available at http://media.obvsg.at/AC07806222
[194] Blaschke D. N., Kronberger E., Sedmik R., Wohlgenannt M., On the renormalizability of a non-commutative gauge model with soft-breaking, work in progress
[195] Denk S., Perturbative aspects of non-local and non-commutative quantum field theories, PhD Thesis, Vienna University of Technology, 2004 available at http://media.obvsg.at/AC04351727-2001
[196] Liao Y., Sibold K., “Time-ordered perturbation theory on non-commutative spacetime. II. Unitarity”, Eur. Phys. J. C, 25 (2002), 479–486, arXiv: hep-th/0206011 | DOI | MR | Zbl
[197] Bozkaya H., Fischer P., Grosse H., Pitschmann M., Putz V., Schweda M., Wulkenhaar R., “Space/time noncommutative field theories and causality”, Eur. Phys. J. C, 29 (2003), 133–141, arXiv: hep-th/0209253 | DOI | MR | Zbl
[198] Ohl T., Rückl R., Zeiner J., “Unitarity of time-like noncommutative gauge theories: rhe violation of Ward identities in time-ordered perturbation theory”, Nuclear Phys. B, 676 (2004), 229–242, arXiv: hep-th/0309021 | DOI | MR | Zbl
[199] Bahns D., Doplicher S., Fredenhagen K., Piacitelli G., “On the unitarity problem in space/time noncommutative theories”, Phys. Lett. B, 533 (2002), 178–181, arXiv: hep-th/0201222 | DOI | MR | Zbl
[200] Bahns D., Doplicher S., Fredenhagen K., Piacitelli G., “Field theory on noncommutative spacetimes: quasiplanar Wick products”, Phys. Rev. D, 71 (2005), 025022, 12 pp., arXiv: hep-th/0408204 | DOI | MR
[201] Kulish P. P., Mudrov A. I., “Twist-related geometries on $q$-Minkowski space”, Proc. Steklov Inst. Math., 3(226), 1999, 86–99, arXiv: math.QA/9901019 | MR
[202] Oeckl R., “Untwisting noncommutative $\mathbb R^d$ and the equivalence of quantum field theories”, Nuclear Phys. B, 581 (2000), 559–574, arXiv: hep-th/0003018 | DOI | MR | Zbl
[203] Wess J., “Deformed gauge theories”, Noncommutative Spacetimes, Lecture Notes in Physics, 774, Springer, Berlin, 2009, 23–37 | DOI
[204] Aschieri P., Dimitrijević M., Meyer F., Schraml S., Wess J., “Twisted gauge theories”, Lett. Math. Phys., 78 (2006), 61–71, arXiv: hep-th/0603024 | DOI | MR | Zbl
[205] Vassilevich D. V., “Twist to close”, Modern Phys. Lett. A, 21 (2006), 1279–1283, arXiv: hep-th/0602185 | DOI | MR | Zbl
[206] Banerjee R., Samanta S., “Gauge generators, transformations and identities on a noncommutative space”, Eur. Phys. J. C, 51 (2007), 207–215, arXiv: hep-th/0608214 | DOI | MR | Zbl
[207] Balachandran A. P., Pinzul A., Qureshi B. A., Vaidya S., “Twisted gauge and gravity theories on the Groenewold–Moyal plane”, Phys. Rev. D, 76 (2007), 105025, 10 pp., arXiv: 0708.0069 | DOI | MR
[208] Akofor E., Balachandran A. P., Joseph A., “Quantum fields on the Groenewold–Moyal plane”, Internat. J. Modern Phys. A, 23 (2008), 1637–1677, arXiv: 0803.4351 | DOI | MR | Zbl
[209] Lukierski J., From noncommutative space-time to quantum relativistic symmetries with fundamental mass parameter, arXiv: hep-th/0112252 | MR
[210] Dimitrijević M., Möller L., Tsouchnika E., “Derivatives, forms and vector fields on the $\kappa$-deformed Euclidean space”, J. Phys. A: Math. Gen., 37 (2004), 9749–9770 pp., arXiv: hep-th/0404224 | DOI | MR | Zbl
[211] Meljanac S., Samsarov A., Stojić M., Gupta K. S., “$\kappa$-Minkowski space-time and the star product realizations”, Eur. Phys. J. C, 53 (2008), 295–309, arXiv: 0705.2471 | DOI | MR | Zbl
[212] Ydri B., “Noncommutative chiral anomaly and the Dirac–Ginsparg–Wilson operator”, J. High Energy Phys., 2003 (2003 issue 8), 046, 18 pp., arXiv: hep-th/0211209 | DOI | MR | Zbl
[213] Azuma T., Bal S., Nagao K., Nishimura J., “Nonperturbative studies of fuzzy spheres in a matrix model with the Chern–Simons term”, J. High Energy Phys., 2004:5 (2004), 005, 36, arXiv: hep-th/0401038 | DOI | MR
[214] Grimstrup J. M., “Noncommutative coordinate transformations and the Seiberg–Witten map”, Acta Phys. Polon. B, 34 (2003), 4855–4866 | MR | Zbl
[215] Aschieri P., Steinacker H., Madore J., Manousselis P., Zoupanos G., Fuzzy extra dimensions: dimensional reduction, dynamical generation and renormalizability, arXiv: 0704.2880
[216] Steinacker H., “Emergent gravity and noncommutative branes from Yang–Mills matrix models”, Nuclear Phys. B, 810 (2009), 1–39, arXiv: 0806.2032 | DOI | MR | Zbl
[217] Klammer D., Steinacker H., “Fermions and noncommutative emergent gravity. II. Curved branes in extra dimensions”, J. High Energy Phys., 2010:2 (2010), 074, 32 pp., arXiv: 0909.5298 | DOI | MR
[218] Grosse H., Lizzi F., Steinacker H., “Noncommutative gauge theory and symmetry breaking in matrix models”, Phys. Rev. D, 81 (2010), 085034, 12 pp., arXiv: 1001.2703 | DOI
[219] Steinacker H., “Emergent geometry and gravity from matrix models: an introduction”, Classical Quantum Gravity, 27 (2010), 133001, 46 pp., arXiv: 1003.4134 | DOI | Zbl
[220] Majid S., “Quantum groups and noncommutative geometry”, J. Math. Phys., 41 (2000), 3892–3942, arXiv: hep-th/0006167 | DOI | MR | Zbl
[221] McCurdy S., Zumino B., “Covariant star product for exterior differential forms on symplectic manifolds”, AIP Conf. Proc., 1200, 2010, 204–214, arXiv: 0910.0459 | DOI
[222] Chaichian M., Tureanu A., Zet G., “Gauge field theories with covariant star-product”, J. High Energy Phys., 2009:7 (2009), 084, 13 pp., arXiv: 0905.0608 | DOI | MR
[223] Vassilevich D. V., “Diffeomorphism covariant star products and noncommutative gravity”, Classical Quantum Gravity, 26 (2009), 145010, 8 pp., arXiv: 0904.3079 | DOI | MR | Zbl
[224] Ho P.-M., Miao S.-P., “Noncommutative differential calculus for a D-brane in a nonconstant $B$ field background with $H=0$”, Phys. Rev. D, 64 (2001), 126002, 8 pp., arXiv: hep-th/0105191 | DOI | MR