@article{SIGMA_2010_6_a60,
author = {Alexander Schenkel and Christoph F. Uhlemann},
title = {Field {Theory} on {Curved} {Noncommutative} {Spacetimes}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a60/}
}
Alexander Schenkel; Christoph F. Uhlemann. Field Theory on Curved Noncommutative Spacetimes. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a60/
[1] Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994 | MR | Zbl
[2] Landi G., An introduction to noncommutative spaces and their geometry, arXiv: hep-th/9701078
[3] Doplicher S., Fredenhagen K., Roberts J. E., “Spacetime quantization induced by classical gravity”, Phys. Lett. B, 331 (1994), 39–44 ; Doplicher S., Fredenhagen K., Roberts J. E., “The quantum structure of spacetime at the Planck scale and quantum fields”, Comm. Math. Phys., 172 (1995), 187–220, arXiv: hep-th/0303037 | DOI | MR | DOI | MR | Zbl
[4] Seiberg N., Witten E., “String theory and noncommutative geometry”, J. High Energy Phys., 1999:9 (1999), 032, 93 pp., arXiv: hep-th/9908142 | DOI | MR
[5] Amelino-Camelia G., Smolin L., Starodubtsev A., “Quantum symmetry, the cosmological constant and Planck-scale phenomenology”, Classical Quantum Gravity, 21 (2004), 3095–3110, arXiv: hep-th/0306134 | DOI | MR | Zbl
[6] Aschieri P., Blohmann C., Dimitrijević M., Meyer F., Schupp P., Wess J. A gravity theory on noncommutative spaces,, Classical Quantum Gravity, 22 (2005), 3511–3532, arXiv: hep-th/0504183 | DOI | MR | Zbl
[7] Aschieri P., Dimitrijević M., Meyer F., Wess J., “Noncommutative geometry and gravity”, Classical Quantum Gravity, 23 (2006), 1883–1911, arXiv: hep-th/0510059 | DOI | MR | Zbl
[8] Kürkçüoǧlu S., Sämann C., “Drinfeld twist and general relativity with fuzzy spaces”, Classical Quantum Gravity, 24 (2007), 291–311, arXiv: hep-th/0606197 | DOI | MR | Zbl
[9] Chamseddine A. H., Felder G., Fröhlich J., “Gravity in noncommutative geometry”, Comm. Math. Phys., 155 (1993), 205–217, arXiv: hep-th/9209044 | DOI | MR | Zbl
[10] Chamseddine A. H., “Complexified gravity in noncommutative spaces”, Comm. Math. Phys., 218 (2001), 283–292, arXiv: hep-th/0005222 | DOI | MR | Zbl
[11] Chamseddine A. H., “Deforming Einstein's gravity”, Phys. Lett. B, 504 (2001), 33–37, arXiv: hep-th/0009153 | DOI | MR | Zbl
[12] Cardella M. A., Zanon D., “Noncommutative deformation of four-dimensional Einstein gravity”, Classical Quantum Gravity, 20 (2003), L95–L103, arXiv: hep-th/0212071 | DOI | MR | Zbl
[13] Chamseddine A. H., “$\mathrm{SL}(2,{\mathbb C})$ gravity with complex vierbein and its noncommutative extension”, Phys. Rev. D, 69 (2004), 024015, 8 pp., arXiv: hep-th/0309166 | DOI | MR
[14] Banerjee R., Mukherjee P., Samanta S., “Lie algebraic noncommutative gravity”, Phys. Rev. D, 75 (2007), 125020, 7 pp., arXiv: hep-th/0703128 | DOI | MR
[15] Aschieri P., Castellani L., “Noncommutative $D=4$ gravity coupled to fermions”, J. High Energy Phys., 2009:6 (2009), 086, 18 pp., arXiv: 0902.3817 | DOI | MR
[16] Madore J., Mourad J., “Quantum space-time and classical gravity”, J. Math. Phys., 39 (1998), 423–442, arXiv: ; Madore J., An introduction to noncommutative differential geometry and its physical applications, London Mathematical Society Lecture Note Series, 257, 2nd ed., Cambridge University Press, Cambridge, 1999 ; Langmann E., Szabo R. J., “Teleparallel gravity and dimensional reductions of noncommutative gauge theory”, Phys. Rev. D, 64 (2001), 104019, 15 pp., arXiv: ; Chamseddine A. H., “An invariant action for noncommutative gravity in four dimensions”, J. Math. Phys., 44 (2003), 2534–2541, arXiv: ; García-Compeán H., Obregón O., Ramírez C., Sabido M., “Noncommutative self-dual gravity”, Phys. Rev. D, 68 (2003), 044015, 8 pp., arXiv: ; Vassilevich D. V., “Quantum noncommutative gravity in two dimensions”, Nuclear Phys. B, 715 (2005), 695–712, arXiv: ; Calmet X., Kobakhidze A., “Noncommutative general relativity”, Phys. Rev. D, 72 (2005), 045010, 5 pp., arXiv: ; Burić M., Grammatikopoulos T., Madore J., Zoupanos G., “Gravity and the structure of noncommutative algebras”, J. High Energy Phys., 2006:4 (2006), 054, 16 pp., arXiv: ; Majid S., Algebraic approach to quantum gravity. II. Noncommutative spacetime, arXiv: ; Majid S., Algebraic approach to quantum gravity. III. Noncommmutative Riemannian geometry, arXiv: ; Szabo R. J., “Symmetry, gravity and noncommutativity”, Classical Quantum Gravity, 23 (2006), R199–R242, arXiv: ; Balachandran A. P., Pinzul A., Qureshi B. A., Vaidya S., “Twisted gauge and gravity theories on the Groenewold–Moyal plane”, Phys. Rev. D, 76 (2007), 105025, 10 pp., arXiv: ; Müller-Hoissen F., “Noncommutative geometries and gravity”, Recent Developments in Gravitation and Cosmology, AIP Conf. Proc., 977, Amer. Inst. Phys., Melville, NY, 2008, 12–29, arXiv: ; Vassilevich D. V., “Diffeomorphism covariant star products and noncommutative gravity”, Classical Quantum Gravity, 26 (2009), 145010, 8 pp., arXiv: ; Vassilevich D. V., “Tensor calculus on noncommutative spaces”, Classical Quantum Gravity, 27 (2010), 095020, 16 pp., arXiv: gr-qc/9607060hep-th/0105094hep-th/0202137hep-th/0302180hep-th/0406163hep-th/0506157hep-th/0603044hep-th/0604130hep-th/0604132hep-th/06062330708.00690710.44180904.30791001.0766 | DOI | MR | Zbl | MR | Zbl | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI | MR | DOI | MR | Zbl | DOI | MR | MR | DOI | MR | Zbl | DOI | MR | Zbl
[17] Rivelles V. O., “Noncommutative field theories and gravity”, Phys. Lett. B, 558 (2003), 191–196, arXiv: hep-th/0212262 | DOI | MR | Zbl
[18] Yang H. S., “Emergent gravity from noncommutative space-time”, Internat. J. Modern Phys. A, 24 (2009), 4473–4517, arXiv: ; Yang H. S., “On the correspondence between noncommuative field theory and gravity”, Modern Phys. Lett. A, 22 (2007), 1119–1132, arXiv: hep-th/0611174hep-th/0612231 | DOI | MR | Zbl | DOI | MR | Zbl
[19] Steinacker H., “Emergent gravity from noncommutative gauge theory”, J. High Energy Phys., 2007:12 (2007), 049, 36 pp., arXiv: ; Steinacker H., “Emergent gravity and noncommutative branes from Yang–Mills matrix models”, Nuclear Phys. B, 810 (2009), 1–39, arXiv: 0708.24260806.2032 | DOI | MR | DOI | MR | Zbl
[20] Dito G., Sternheimer D., “Deformation quantization: genesis, developments and metamorphoses”, Deformation Quantization (Strasbourg, 2001), IRMA Lect. Math. Theor. Phys., 1, de Gruyter, Berlin, 2002, 9–54, arXiv: math.QA/0201168 | MR | Zbl
[21] Drinfel'd V. G., “On constant quasiclassical solutions of the Yang–Baxter equations”, Soviet Math. Dokl., 28 (1983), 667–671
[22] Ohl T., Schenkel A., “Symmetry reduction in twisted noncommutative gravity with applications to cosmology and black holes”, J. High Energy Phys., 2009:1 (2009), 084, 22 pp., arXiv: 0810.4885 | DOI | MR
[23] Schupp P., Solodukhin S., Exact black hole solutions in noncommutative gravity, arXiv: 0906.2724
[24] Ohl T., Schenkel A., “Cosmological and black hole spacetimes in twisted noncommutative gravity”, J. High Energy Phys., 2009:10 (2009), 052, 12 pp., arXiv: 0906.2730 | DOI | MR
[25] Aschieri P, Castellani L., “Noncommutative gravity solutions”, J. Geom. Phys., 60 (2010), 375–393, arXiv: 0906.2774 | DOI | MR | Zbl
[26] Asakawa T., Kobayashi S., “Noncommutative solitons of gravity”, Classical Quantum Gravity, 27 (2010), 105014, 20 pp., arXiv: 0911.2136 | DOI | MR | Zbl
[27] Stern A., “Emergent Abelian gauge fields from noncommutative gravity”, SIGMA, 6 (2010), 019, 15 pp., arXiv: 0912.3021 | DOI | MR | Zbl
[28] Chu C. S., Greene B. R., Shiu G., “Remarks on inflation and noncommutative geometry”, Modern Phys. Lett. A, 16 (2001), 2231–2240, arXiv: ; Lizzi F., Mangano G., Miele G., Peloso M., “Cosmological perturbations and short distance physics from noncommutative geometry”, J. High Energy Phys., 2002:6 (2002), 049, 16 pp., arXiv: ; Brandenberger R., Ho P.-M., “Noncommutative spacetime, stringy spacetime uncertainty principle, and density fluctuations”, Phys. Rev. D, 66 (2002), 023517, 10 pp., arXiv: ; Huang Q.-G., Li M., “CMB power spectrum from noncommutative spacetime”, J. High Energy Phys., 2003:6 (2003), 014, 7 pp., arXiv: ; Huang Q. G., Li M., “Noncommutative inflation and the CMB multipoles”, J. Cosmol. Astropart. Phys., 0311 (2003), 001, 9 pp., arXiv: ; Tsujikawa S., Maartens R., Brandenberger R., “Non-commutative inflation and the CMB”, Phys. Lett. B, 574 (2003), 141–148, arXiv: ; Kim H.-C., Yee J. H., Rim C., “Density fluctuations in kappa-deformed inflationary universe”, Phys. Rev. D, 72 (2005), 103523, 13 pp., arXiv: ; Fatollahi A. H., Hajirahimi M., “Noncommutative black-body radiation: implications on cosmic microwave background”, Europhys. Lett., 75 (2006), 542–547, arXiv: ; Akofor E., Balachandran A. P., Jo S. G., Joseph A., Qureshi B. A., “Direction-dependent CMB power spectrum and statistical anisotropy from noncommutative geometry”, J. High Energy Phys., 2008:5 (2008), 092, 21 pp., arXiv: ; Akofor E., Balachandran A. P., Joseph A., Pekowsky L., Qureshi B. A., “Constraints from CMB on spacetime noncommutativity and causality violation”, Phys. Rev. D, 79 (2009), 063004, 5 pp., arXiv: ; Fabi S., Harms B., Stern A., “Noncommutative corrections to the Robertson–Walker metric”, Phys. Rev. D, 78 (2008), 065037, 7 pp., arXiv: hep-th/0011241hep-th/0203099hep-th/0203119hep-th/0304203astro-ph/0308458astro-ph/0308169gr-qc/0506122astro-ph/06072570710.58970806.24580808.0943 | DOI | MR | Zbl | DOI | MR | DOI | MR | DOI | MR | DOI | DOI | Zbl | DOI | DOI | MR | DOI | Zbl | DOI | DOI | MR
[29] Dolan B. P., Gupta K. S., Stern A., “Noncommutative BTZ black hole and discrete time”, Classical Quantum Gravity, 24 (2007), 1647–1655, arXiv: ; Chaichian M., Tureanu A., Zet G., “Corrections to Schwarzschild solution in noncommutative gauge theory of gravity”, Phys. Lett. B, 660 (2008), 573–578, arXiv: ; Mukherjee P., Saha A., “Reissner–Nordstrom solutions in noncommutative gravity”, Phys. Rev. D, 77 (2008), 064014, 7 pp., arXiv: ; Burić M., Madore J., “Spherically symmetric non-commutative space: $d=4$”, Eur. Phys. J. C, 58 (2008), 347–353, arXiv: ; Nicolini P., “Noncommutative black holes, the final appeal to quantum gravity: a review”, Internat. J. Modern Phys. A, 24 (2009), 1229–1308, arXiv: ; Wang D., Zhang R. B., Zhang X., “Quantum deformations of Schwarzschild and Schwarzschild–de Sitter spacetimes”, Classical Quantum Gravity, 26 (2009), 085014, 14 pp., arXiv: ; Di Grezia E., Esposito G., Non-commutative Kerr black hole, arXiv: ; Banerjee R., Chakraborty B., Ghosh S., Mukherjee P., Samanta S., “Topics in noncommutative geometry inspired physics”, Found. Phys., 39 (2009), 1297–1345, arXiv: hep-th/06112330710.20750710.58470807.09600807.19390809.06140906.23030909.1000 | DOI | MR | Zbl | DOI | MR | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl
[30] Oeckl R., “Untwisting noncommutative $\mathbb R^d$ and the equivalence of quantum field theories”, Nuclear Phys. B, 581 (2000), 559–574, arXiv: ; Bahns D., Doplicher S., Fredenhagen K., Piacitelli G., “Ultraviolet finite quantum field theory on quantum spacetime”, Comm. Math. Phys., 237 (2003), 221–241, arXiv: ; Chaichian M., Mnatsakanova M. N., Nishijima K., Tureanu A., Vernov Yu. S., Towards an axiomatic formulation of noncommutative quantum field theory, arXiv: ; Paschke M., Verch R., “Local covariant quantum field theory over spectral geometries”, Classical Quantum Gravity, 21 (2004), 5299–5316, arXiv: ; Zahn J., “Remarks on twisted noncommutative quantum field theory”, Phys. Rev. D, 73 (2006), 105005, 6 pp., arXiv: ; Bu J.-G., Kim H.-C., Lee Y., Vac C. H., Yee J. H., “Noncommutative field theory from twisted Fock space”, Phys. Rev. D, 73 (2006), 125001, 10 pp., arXiv: ; Gayral V., Jureit J. H., Krajewski T., Wulkenhaar R., Quantum field theory on projective modules, arXiv: ; Fiore G., Wess J., “Full twisted Poincaré symmetry and quantum field theory on Moyal–Weyl spaces”, Phys. Rev. D, 75 (2007), 105022, 13 pp., arXiv: ; Freidel L., Kowalski-Glikman J., Nowak S., “Field theory on $\kappa$-Minkowski space revisited: Noether charges and breaking of Lorentz symmetry”, Internat. J. Modern Phys. A, 23 (2008), 2687–2718, arXiv: ; Grosse H., Lechner G., “Wedge-local quantum fields and noncommutative Minkowski space”, J. High Energy Phys., 2007:11 (2007), 012, 26 pp., arXiv: ; Arzano M., Marciano A., “Fock space, quantum fields and kappa-Poincaré symmetries”, Phys. Rev. D, 76 (2007), 125005, 14 pp., arXiv: ; Daszkiewicz M., Lukierski J., Woronowicz M., “Towards quantum noncommutative $\kappa$-deformed field theory”, Phys. Rev. D, 77 (2008), 105007, 10 pp., arXiv: ; Balachandran A. P., Pinzul A., Qureshi B. A., “Twisted Poincaré invariant quantum field theories”, Phys. Rev. D, 77 (2008), 025021, 9 pp., arXiv: ; Aschieri P., Lizzi F., Vitale P., “Twisting all the way: from classical mechanics to quantum fields”, Phys. Rev. D, 77 (2008), 025037, 16 pp., arXiv: ; Arzano M., “Quantum fields, non-locality and quantum group symmetries”, Phys. Rev. D, 77 (2008), 025013, 5 pp., arXiv: ; Daszkiewicz M., Lukierski J., Woronowicz M., “$\kappa$-deformed oscillators, the choice of star product and free $\kappa$-deformed quantum fields”, J. Phys. A: Math. Theor., 42 (2009), 355201, 18 pp., arXiv: ; Grosse H., Lechner G., “Noncommutative deformations of Wightman quantum field theories”, J. High Energy Phys., 2008:9 (2008), 131, 29 pp., arXiv: ; Fiore G., “On second quantization on noncommutative spaces with twisted symmetries”, J. Phys. A: Math. Theor., 43 (2010), 155401, 39 pp., arXiv: ; Borris M., Verch R., “Dirac field on Moyal–Minkowski spacetime and non-commutative potential scattering”, Comm. Math. Phys., 293 (2010), 399–448, arXiv: ; Aschieri P., “Star product geometries”, Russ. J. Math. Phys., 16 (2009), 371–383, arXiv: hep-th/0003018hep-th/0301100hep-th/0402212gr-qc/0405057hep-th/0603231hep-th/0603251hep-th/0612048hep-th/07010780706.36580706.39920707.13290708.15610708.17790708.30020710.10830807.19920808.34590811.07730812.07860903.2457 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI | MR | MR | DOI | MR | DOI | MR | Zbl | DOI | MR | DOI | MR | DOI | MR | DOI | MR | Zbl | DOI | MR | DOI | MR | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl
[31] Ohl T., Schenkel A., Algebraic approach to quantum field theory on a class of noncommutative curved spacetimes, arXiv: 0912.2252
[32] Wald R. M., Quantum field theory in curved spacetime and black hole thermodynamics, Chicago Lectures in Physics, University of Chicago Press, Chicago, IL, 1994 | MR
[33] Bär C., Ginoux N., Pfäffle F., Wave equations on Lorentzian manifolds and quantization, ESI Lectures in Mathematics and Physics, European Mathematical Society (EMS), Zürich, 2007, arXiv: 0806.1036 | MR
[34] Reshetikhin N., “Multiparameter quantum groups and twisted quasitriangular Hopf algebras”, Lett. Math. Phys., 20 (1990), 331–335 | DOI | MR | Zbl
[35] Jambor C., Sykora A., Realization of algebras with the help of $*$-products, arXiv: hep-th/0405268
[36] Bu J.-G., Kim H.-C., Lee Y., Vac C. H., Yee J. H., “$\kappa$-deformed spacetime from twist”, Phys. Lett. B, 665 (2008), 95–99, arXiv: ; Borowiec A., Pachol A., “$\kappa$-Minkowski spacetime as the result of Jordanian twist deformation”, Phys. Rev. D, 79 (2009), 045012, 11 pp., arXiv: hep-th/06111750812.0576 | DOI | MR | DOI
[37] Dimakis A., Madore J., “Differential calculi and linear connections”, J. Math. Phys., 37 (1996), 4647–4661, arXiv: ; Cerchiai L., Fiore G., Madore J., “Frame formalism for the $N$-dimensional quantum Euclidean spaces”, Internat. J. Modern Phys. B, 14 (2000), 2305–2314, arXiv: q-alg/9601023math.QA/0007044 | DOI | MR | Zbl | DOI | MR | Zbl
[38] Ohl T., Schenkel A., Uhlemann C. F., “Spacetime noncommutativity in models with warped extradimensions”, J. High Energy Phys., 2010:7 (2010), 029, 16 pp., arXiv: 1002.2884 | DOI
[39] Schenkel A., Uhlemann C. F., High energy improved scalar quantum field theory from noncommutative geometry without UV/IR-mixing, arXiv: 1002.4191
[40] Hořava P., “Quantum gravity at a Lifshitz point”, Phys. Rev. D, 79 (2009), 084008, 15 pp., arXiv: 0901.3775 | DOI | MR | Zbl
[41] Dappiaggi C., Moretti V., Pinamonti N., “Cosmological horizons and reconstruction of quantum field theories”, Comm. Math. Phys., 285 (2009), 1129–1163, arXiv: ; Dappiaggi C., Moretti V., Pinamonti N., “Distinguished quantum states in a class of cosmological spacetimes and their Hadamard property”, J. Math. Phys., 50 (2009), 062304, 38 pp., arXiv: ; Dappiaggi C., Moretti V., Pinamonti N., Rigorous construction and Hadamard property of the Unruh state in Schwarzschild spacetime, arXiv: 0712.17700812.40330907.1034 | DOI | MR | Zbl | DOI | MR