@article{SIGMA_2010_6_a6,
author = {Debashish Goswami},
title = {Quantum {Isometry} {Group} for {Spectral} {Triples} with {Real} {Structu}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a6/}
}
Debashish Goswami. Quantum Isometry Group for Spectral Triples with Real Structu. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a6/
[1] Banica T., “Quantum automorphism groups of small metric spaces”, Pacific J. Math., 219 (2005), 27–51 ; math.QA/0304025 | DOI | MR | Zbl
[2] Banica T., “Quantum automorphism groups of homogeneous graphs”, J. Funct. Anal., 224 (2005), 243–280 ; math.QA/0311402 | DOI | MR | Zbl
[3] Bichon J., “Quantum automorphism groups of finite graphs”, Proc. Amer. Math. Soc., 131 (2003), 665–673 ; math.QA/9902029 | DOI | MR | Zbl
[4] Bhowmick J., “Quantum isometry group of the $n$-tori”, Proc. Amer. Math. Soc., 137 (2009), 3155–3161 ; arXiv:0803.4434 | DOI | MR | Zbl
[5] Bhowmick J., Goswami D., “Quantum group of orientation-preserving Riemannian isometries”, J. Funct. Anal., 257 (2009), 2530–2572 ; arXiv:0806.3687 | DOI | MR | Zbl
[6] Bhowmick J., Goswami D., Skalski A., “Quantum isometry groups of 0-dimensional manifolds”, Trans. Amer. Math. Soc. (to appear)
[7] Bhowmick J., Goswami D., “Quantum isometry groups: examples and computations”, Comm. Math. Phys., 285 (2009), 421–444 ; arXiv:0707.2648 | DOI | MR | Zbl
[8] Bhowmick J., Goswami D., Quantum isometry groups of the Podles sphere, arXiv:0810.0658
[9] Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994 | MR | Zbl
[10] Da̧browski L., “Geometry of quantum spheres”, J. Geom. Phys., 56 (2006), 86–107 ; math.QA/0501240 | DOI | MR
[11] Da̧browski L., Landi G., Paschke M., Sitarz A., “The spectral geometry of the equatorial Podleś sphere”, C. R. Math. Acad. Sci. Paris, 340 (2005), 819–822 ; math.QA/0408034 | MR
[12] Da̧browski L., D'Andrea F., Landi G., Wagner E., “Dirac operators on all Podleś quantum spheres”, J. Noncommut. Geom., 1 (2007), 213–239 ; math.QA/0606480 | MR | Zbl
[13] Goswami D., “Quantum group of isometries in classical and noncommutative geometry”, Comm. Math. Phys., 285 (2009), 141–160 ; arXiv:0704.0041 | DOI | MR
[14] Maes A., Van Daele A., “Notes on compact quantum groups”, Nieuw Arch. Wisk. (4), 16 (1998), 73–112 ; math.FA/9803122 | MR | Zbl
[15] Varilly J. C., An introduction to noncommutative geometry, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2006 | MR | Zbl
[16] Wang S., “Free products of compact quantum groups”, Comm. Math. Phys., 167 (1995), 671–692 | DOI | MR | Zbl
[17] Wang S., “Quantum symmetry groups of finite spaces”, Comm. Math. Phys., 195 (1998), 195–211 ; math.OA/9807091 | DOI | MR | Zbl
[18] Wang S., “Structure and isomorphism classification of compact quantum groups $A_u(Q)$ and $B_u(Q)$”, J. Operator Theory, 48 (2002), 573–583 ; math.OA/9807095 | MR | Zbl
[19] Wang S., “Ergodic actions of universal quantum groups on operator algebras”, Comm. Math. Phys., 203 (1999), 481–498 ; math.OA/9807093 | DOI | MR | Zbl
[20] Woronowicz S. L., “Compact matrix pseudogroups”, Comm. Math. Phys., 111 (1987), 613–665 | DOI | MR | Zbl
[21] Woronowicz S. L., “Compact quantum groups”, Symétries Quantiques (Les Houches, 1995), eds. A. Connes et al., North-Holland, Amsterdam, 1998, 845–884 | MR | Zbl