@article{SIGMA_2010_6_a58,
author = {Everton M. C. Abreu and Albert C. R. Mendes and Wilson Oliveira},
title = {Noncommutativity and {Duality} through the {Symplectic} {Embedding} {Formalism}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a58/}
}
TY - JOUR AU - Everton M. C. Abreu AU - Albert C. R. Mendes AU - Wilson Oliveira TI - Noncommutativity and Duality through the Symplectic Embedding Formalism JO - Symmetry, integrability and geometry: methods and applications PY - 2010 VL - 6 UR - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a58/ LA - en ID - SIGMA_2010_6_a58 ER -
%0 Journal Article %A Everton M. C. Abreu %A Albert C. R. Mendes %A Wilson Oliveira %T Noncommutativity and Duality through the Symplectic Embedding Formalism %J Symmetry, integrability and geometry: methods and applications %D 2010 %V 6 %U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a58/ %G en %F SIGMA_2010_6_a58
Everton M. C. Abreu; Albert C. R. Mendes; Wilson Oliveira. Noncommutativity and Duality through the Symplectic Embedding Formalism. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a58/
[1] Seiberg N., Witten E., “String theory and noncommutative geometry”, J. High Energy Phys., 1999:9 (1999), 032, 93 pp., arXiv: hep-th/9908142 | DOI | MR
[2] Deriglazov A. A., Neves C., Oliveira W., Abreu E. M. C., Wotzasek C., Filgueiras C., “Open string with a background $B$ field as the first order mechanics, noncommutativity, and soldering formalism”, Phys. Rev. D, 76 (2007), 064007, 8 pp., arXiv: 0707.1799 | DOI | MR
[3] Connes A., Douglas M. R., Schwarz A., “Noncommutative geometry and matrix theory: compactification on tori”, J. High Energy Phys., 1998:2 (1998), 003, 35 pp., arXiv: ; Konechny A., Schwarz A., “Introduction to M(atrix) theory and noncommutative geometry”, Phys. Rep., 360 (2002), 353–465, arXiv: ; Harvey J. A., Komaba lectures on noncommutative solitons and D-branes, arXiv: ; Nekrasov N. A., Trieste lectures on solitons in noncommutative gauge theories, arXiv: hep-th/9711162hep-th/0012145hep-th/0102076hep-th/0011095 | DOI | MR | DOI | MR | Zbl | MR
[4] Amorim R., Barcelos-Neto J., “Hamiltonian embedding of the massive noncommutative $\mathrm{U}(1)$ theory”, Phys. Rev. D, 64 (2001), 065013, 8 pp., arXiv: (and references therein) hep-th/0101196 | DOI | MR
[5] Arefeva I. Y., Belov D. M., Giryavets A. A., Koshelev A. S., Medvedev P. B., NC field theories and (super) string field theories, arXiv: hep-th/0111208
[6] Szabo R. J., “Quantum field theory on NC spaces”, Phys. Rep., 378 (2003), 207–299, arXiv: ; Douglas M. R., Nekrasov N. A., “Noncommutative field theory”, Rev. Modern Phys., 73 (2001), 977–1029, arXiv: ; Szabo R. J., “Quantum gravity, field theory and signatures of NC spacetime”, Gen. Relativity Gravitation, 42 (2010), 1–29, arXiv: ; Szabo R. J., “Symmetry, gravity and noncommutativity”, Classical Quantum Gravity, 23 (2006), R199–R242, arXiv: hep-th/0109162hep-th/01060480906.2913hep-th/0606233 | DOI | MR | Zbl | DOI | MR | DOI | MR | DOI | MR | Zbl
[7] Dayi O. F., Kelleyane L. T., “Wigner functions for the Landau problem in noncommutative spaces”, Modern Phys. Lett. A, 17 (2002), 1937–1944, arXiv: hep-th/0202062 | DOI | MR | Zbl
[8] Horváthy P. A., Plyushchay M. S., “Anyon wave equations and the noncommutative plane”, Phys. Lett. B, 595 (2004), 547–555, arXiv: ; Horváthy P. A., Plyushchay M. S., “Nonrelativistic anyons and exotic Galilean symmetry”, J. High Energy Phys., 2002:6 (2002), 033, 11 pp., arXiv: hep-th/0404137hep-th/0201228 | DOI | MR | DOI | MR
[9] Deriglazov A. A., “Quantum mechanics on noncommutative plane and sphere from constrained systems”, Phys. Lett. B, 530 (2002), 235–243, arXiv: ; Deriglazov A. A., “Noncommutative relativistic particle on the electromagnetic background”, Phys. Lett. B, 555 (2003), 83–88, arXiv: hep-th/0201034hep-th/0208201 | DOI | MR | Zbl | DOI | MR | Zbl
[10] Deriglazov A. A., NC version of an arbitrary nondegenerate mechanics, arXiv: hep-th/0208072
[11] Chakraborty B., Gangopadhyay S., Saha A.,, “Seiberg–Witten map and Galilean symmetry violation in a non-commutative planar system”, Phys. Rev. D, 70 (2004), 107707, 4 pp., arXiv: ; Scholtz F. G., Chakraborty B., Gangopadhyay S., Hazra A. G., “Dual families of non-commutative quantum systems”, Phys. Rev. D, 71 (2005), 085005, 11 pp., arXiv: ; Gangopadhyay S., Scholtz F. G., “Path-integral action of a particle in the noncommutative plane”, Phys. Rev. Lett., 102 (2009), 241602, 4 pp., arXiv: hep-th/0312292hep-th/05021430904.0379 | DOI | MR | DOI | MR | DOI | MR
[12] Sheikh-Jabbari M. M., “$C$, $P$, and $T$ invariance of noncommutative gauge theories”, Phys. Rev. Lett., 84 (2000), 5265–5268, arXiv: hep-th/0001167 | DOI | MR
[13] Garcia-Bondía J. M., Martín C. P., “Chiral gauge anomalies on noncommutative $\mathbb R^4$”, Phys. Lett. B, 479 (2000), 321–328, arXiv: ; Ardalan F., Sadooghi N., “Axial anomaly in noncommutative QED on $\mathbb R^4$”, Internat. J. Modern Phys. A, 16 (2001), 3151–3177, arXiv: hep-th/0002171hep-th/0002143 | DOI | MR | DOI | MR | Zbl
[14] Dayi O. F., “BRST-BFV analysis of equivalence between noncommutative and ordinary gauge theories”, Phys. Lett. B, 481 (2000), 408–412, arXiv: hep-th/0001218 | DOI | MR | Zbl
[15] Girotti H. O., Gomes M., Rivelles V. O., da Silva A. J., “A consistent noncommutative field theory: the Wess–Zumino model”, Nuclear Phys. B, 587 (2000), 299–310, arXiv: ; Grisaru M. T., Penati S., “Noncommutative supersymmetric gauge anomaly”, Phys. Lett. B, 504 (2001), 89–100, arXiv: hep-th/0005272hep-th/0010177 | DOI | MR | Zbl | DOI | MR | Zbl
[16] Minwalla S., Van Raamsdonk M., Seiberg N., “Noncommutative perturbative dynamics”, J. High Energy Phys., 2000:2 (2000), 020, 31 pp., arXiv: hep-th/9912072 | DOI | MR
[17] Hayakawa M., Perturbative ultraviolet and infrared dynamics of noncommutative quantum field theory, arXiv: ; Aref'eva I. Y., Belov D. M., Koshelev A. S., “Two-loop diagrams in noncommutative $\phi^4_4$ theory”, Phys. Lett. B, 476 (2000), 431–436, arXiv: ; Martín C. P., Sánchez-Ruiz D., “The one loop UV divergent structure of $\mathrm U(1)$ Yang–Mills theory on noncommutative $\mathbb R^4$”, Phys. Rev. Lett., 83 (1999), 476–479, arXiv: ; Bonora L., Salizzoni M., “Renormalization of noncommutative $\mathrm U(N)$ gauge theories”, Phys. Lett. B, 504 (2001), 80–88, arXiv: hep-th/0009098hep-th/9912075hep-th/9903077hep-th/0011088 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl
[18] Gomis J., Mehen T., “Space-time noncommutative field theories and unitarity”, Nuclear Phys. B, 591 (2000), 265–276, arXiv: hep-th/0005129 | DOI | MR | Zbl
[19] Arfaei H., Yavartanoo M. H., Phenomenological consequences of non-commutative QED, arXiv: hep-th/0010244
[20] Álvarez-Gaumé L., Meyer F., Vázquez-Mozo M. A., “Comments on noncommutative gravity”, Nuclear Phys. B, 753 (2006), 92–117, arXiv: ; Calmet X., Kobakhidze A., “Noncommutative general relativity”, Phys. Rev. D, 72 (2005), 045010, 5 pp., arXiv: ; Harikumar E., Rivelles V. O., “Noncommutative gravity”, Classical Quantum Gravity, 23 (2006), 7551–7560, arXiv: ; Müller-Hoissen F., “Noncommutative geometries and gravity”, Recent Developments in Gravitation and Cosmology, AIP Conf. Proc., 977, Amer. Inst. Phys., Melville, NY, 2008, 12–29, arXiv: hep-th/0605113hep-th/0506157hep-th/06071150710.4418 | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl | DOI | MR
[21] Banerjee R., “A novel approach to noncommutativity in planar quantum mechanics”, Modern Phys. Lett. A, 17 (2002), 631–645, arXiv: hep-th/0106280 | DOI | MR | Zbl
[22] 't Hooft G., “Quantum gravity as a dissipative deterministic system”, Classical Quantum Gravity, 16 (1999), 3263–3279, arXiv: gr-qc/9903084 | DOI | MR | Zbl
[23] Jackiw R., Nair V. P., “Relativistic wave equations for anyons”, Phys. Rev. D, 43 (1991), 1933–1942 ; Plyuschay M. S., “Relativistic particle with torsion, Majorana equation and fractional spin”, Phys. Lett. B, 262 (1991), 71–78 ; Chow C., Nair V. P., Polychronakos A. P., “On the electromagnetic interactions of anyons”, Phys. Lett. B, 304 (1993), 105–110, arXiv: ; Ghosh S., “Spinning particles in 2+1 dimensions”, Phys. Lett. B, 338 (1994), 235–240, arXiv: ; Erratum Phys. Lett. B, 347 (1995), 468, arXiv: hep-th/9301037hep-th/9406089hep-th/9406089 | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI
[24] Djemaï A. E. F., Smail H., “On noncommtative classical mechanics”, Commun. Theor. Phys., 41 (2004), 837–844, arXiv: hep-th/0309034 | MR | Zbl
[25] Djemaï A. E. F., “Introduction to Dubois-Violette's noncommutative differential geometry”, Internat. J. Theoret. Phys., 34 (1995), 801–887 | DOI | MR | Zbl
[26] Doplicher S., Fredenhagen K., Roberts J. E., “Spacetime quantization induced by classical gravity”, Phys. Lett. B, 331 (1994), 39–44 ; Doplicher S., Fredenhagen K., Roberts J. E., “The quantum structure of space-time at the Planck scale and quantum fields”, Comm. Math. Phys., 172 (1995), 187–220 , arXiv: http://projecteuclid.org/getRecord?id=euclid.cmp/1104273963hep-th/0303037 | DOI | MR | DOI | MR | Zbl
[27] Amorim R., “Tensor operators in noncommutative quantum mechanics”, Phys. Rev. Lett., 101 (2008), 081602, 4 pp., arXiv: ; Amorim R., “Dynamical symmetries in noncommutative theories”, Phys. Rev. D, 78 (2008), 105003, 7 pp., arXiv: ; Amorim R., “Fermions and noncommutative theories”, J. Math. Phys., 50 (2009), 022303, 7 pp., arXiv: ; Amorim R., “Tensor coordinates in noncommutative mechanics”, J. Math. Phys., 50 (2009), 052103, 7 pp., arXiv: 0804.44000808.30620808.39030804.4405 | DOI | MR | DOI | MR | DOI | MR | DOI | MR
[28] Abreu E. M. C., Mendes A. C. R., Oliveira W., The noncommutative Doplicher–Fredenhagen–Roberts–Amorim space, arXiv: 1003.5322
[29] Dirac P. A. M., “A reformulation of the Born–Infeld electrodynamics”, Proc. Roy. Soc. London. Ser. A, 257 (1960), 32–43 ; Hanson A., Regge T., Teitelboim C., Constrained Hamiltonian systems, Academia Nazionale dei Lincei, Roma, 1976; Sundermeyer K., Constrained dynamics. With applications to Yang–Mills theory, general relativity, classical spin, dual string model, Lectures Notes in Physics, 169, Springer, Berlin, New York, 1982 ; Bergmann P. G., “Non-linear field theories”, Phys. Rev., 75 (1949), 680–685 | DOI | MR | Zbl | MR | Zbl | DOI | MR | Zbl
[30] Banerjee N., Banerjee R., Ghosh S., “Quantization of second class systems in the Batalin–Tyutin formalism”, Ann. Physics, 241 (1995), 237–257, arXiv: (and references therein) hep-th/9403069 | DOI | MR | Zbl
[31] Rajaraman R., “Hamiltonian formulation of the anomalous chiral Schwinger model”, Phys. Lett. B, 154 (1985), 305–309 | DOI | MR
[32] Faddeev L., Shatashivilli S. L., “Realization of the Schwinger term in the Gauss law and the possibility of correct quantization of a theory with anomalies”, Phys. Lett. B, 167 (1986), 225–228 | DOI
[33] Neves C., Oliveira W., “Clebsch parameterization from the symplectic point of view”, Phys. Lett. A, 321 (2004), 267–272, arXiv: hep-th/0310064 | DOI | MR | Zbl
[34] Wotzasek C., “On the Wess–Zumino term for a general anomalous gauge theory with second class constraints”, Internat. J. Modern Phys. A, 5 (1990), 1123–1133 ; Wotzasek C., “Derivation of the Wess–Zumino term for the chiral Schwinger model using Dirac bracket formalism”, J. Math. Phys., 32 (1991), 540–543 | DOI | DOI | MR | Zbl
[35] Batalin I. A., Fradkin E. S., “Operator quantization of dynamical systems with irreducible first- and second-class constraints”, Phys. Lett. B, 180 (1987), 157–162 ; Erratum Phys. Lett. B, 236 (1990), 528–529 ; Batalin I. A., Tyutin I. V., “Existence theorem for the effective gauge algebra in the generalized canonical formalism with Abelian conversion of second-class constraints”, Internat. J. Modern Phys. A, 6 (1991), 3255–3282 ; Batalin I. A., Fradkin E. S., Fradkina T. E., “Another version for operatorial quantization of dynamical systems with irreducible constraints”, Nuclear Phys. B, 314 (1989), 158–174 ; Erratum Nuclear Phys. B, 323 (1989), 734–735 | DOI | MR | DOI | DOI | MR | Zbl | DOI | MR | DOI | MR
[36] Ananias Neto J., Neves C., Oliveira W., “Gauging the SU(2) Skyrme model”, Phys. Rev. D, 63 (2001), 085018, 9 pp., arXiv: ; Abreu E. M. C., Ananias Neto J., Mendes A. C. R., Neves C., Oliveira W., Gauge invariance and dual equivalence of Abelian and non-Abelian actions via dual embedding formalism, arXiv: hep-th/00080701001.2254 | DOI | MR
[37] Hong S.-T., Kim Y.-W., Park Y.-J., Rothe K. D., “Symplectic embedding and Hamilton–Jacobi analysis of Proca model”, Modern Phys. Lett. A, 17 (2002), 435–451, arXiv: hep-th/0112170 | DOI | MR | Zbl
[38] Batalin I. A., Fradkin E. S., “Operational quantization of dynamical systems subject to second class constraints”, Nuclear Phys. B, 279 (1987), 514–528 | DOI | MR
[39] Kin Y.-W., Park Y.-J., Rothe K. D., “Hamiltonian embedding of SU(2) Higgs model in the unitary gauge”, J. Phys. G: Nucl. Part. Phys., 24 (1998), 953–961, arXiv: hep-th/9711092 | DOI
[40] Wotzasek C., “The Wess–Zumino term for chiral bosons”, Phys. Rev. Lett., 66 (1991), 129–132 | DOI | MR | Zbl
[41] Vytheeswaran A. S., “Gauge invariances in the Proca model”, Internat. J. Modern Phys. A, 13 (1998), 765–778, arXiv: hep-th/9701050 | DOI | MR | Zbl
[42] Mitra P., Rajaraman R., “New results on systems with second class constraints”, Ann. Physics, 203 (1990), 137–156 | DOI | MR | Zbl
[43] Neves C., Oliveira W., Rodrigues D. C., Wotzasek C., “Hamiltonian symplectic embedding of the massive noncommutative U(1) theory”, J. Phys. A: Math. Gen., 37 (2004), 9303–9315, arXiv: ; Abreu E. M. C., Neves C., Oliveira W., “Noncommutativity from the symplectic point of view”, Internat. J. Modern Phys. A, 21 (2006), 5359–5369, arXiv: ; Neves C., Oliveira W., Rodrigues D. C., Wotzasek C., “Embedding commutative and noncommutative theories in the symplectic framework”, Phys. Rev. D, 69 (2004), 045016, 13 pp., arXiv: hep-th/0310082hep-th/0411108hep-th/0311209 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR
[44] Dirac P. A. M., Lectures on quantum mechanics, Dover, 2001
[45] Faddeev L., Jackiw R., “Hamiltonian reduction of unconstrained and constrained systems”, Phys. Rev. Lett., 60 (1988), 1692–1694 ; Woodhouse N. M. J., Geometric quantization, Oxford Mathematical Monographs, The Clarendon Press, New York; Oxford University Press, 1980 | DOI | MR | Zbl | MR
[46] Barcelos-Neto J., Wotzasek C., “Symplectic quantization of constrained systems”, Modern Phys. Lett. A, 7 (1992), 1737–1747 | DOI | MR | Zbl
[47] Gotay M. J., Nester J. M., Hinds G., “Presymplectic manifolds and the Dirac–Bergmann theory of constraints”, J. Math. Phys., 19 (1978), 2388–2399, (and references therein) | DOI | MR | Zbl
[48] Barcelos-Neto J., “BFFT quantization with nonlinear constraints”, Phys. Rev. D, 55 (1997), 2265–2273, arXiv: hep-th/9701072 | DOI | MR
[49] Abreu E. M. C., Mendes A. C. R., Neves C., Oliveira W., Wotzasek C., Xavier L. M. V., “New considerations about the Maxwell–Podolsky-like theory through the symplectic embedding formalism”, Modern Phys. Lett. A, 25 (2010), 1115–1127, arXiv: 0812.0950 | DOI | Zbl
[50] Montani H., “Symplectic analysis of constrained systems”, Internat. J. Modern Phys. A, 8 (1993), 4319–4337 | DOI | MR | Zbl
[51] Connes A., Noncommutative geometry year 2000, arXiv: math.QA/0011193 | MR
[52] Ghosh S., “Bosonization in the noncommutative plane”, Phys. Lett. B, 563 (2003), 112–116, arXiv: hep-th/0303022 | DOI | MR | Zbl
[53] Moyal J. E., “Quantum mechanics as a statistical theory”, Proc. Cambridge Philos. Soc., 45 (1949), 99–124 ; Vey J., “Déformation du crochet de poisson sur une variété symplectique”, Comment. Math. Helv., 50 (1975), 421–454 ; Flato M., Lichnerowicz A., Sternheimer D., “Déformations 1-différentiables des algèbres de Lie attachés à une variété symplectique ou de contact”, Compositio Math., 31 (1975), 47–82 ; Flato M., Lichnerowicz A., Sternheimer D., “Deformations of Poisson brackets, Dirac brackets and applications”, J. Math. Phys., 17 (1976), 1754–1762 http://www.numdam.org/item?id=CM_1975__31_1_47_0 | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl | DOI | MR
[54] Horváthy P. A., “The non-commutative Landau problem”, Ann. Physics, 299 (2002), 128–140, arXiv: hep-th/0201007 | DOI | MR | Zbl
[55] Floreanini R., Jackiw R., “Selfdual fields as charge density solitons”, Phys. Rev. Lett., 59 (1987), 1873–1876 | DOI
[56] Bazeia D., “A quantum-mechanical anomaly re-examined”, Modern Phys. Lett. A, 6 (1991), 1147–1153 | DOI
[57] Banerjee R., Ghosh S., “The chiral oscillator and its applications in quantum theory”, J. Phys. A: Math. Gen., 31 (1998), L603–L608, arXiv: quant-ph/9805009 | DOI | MR | Zbl
[58] Banerjee R., Mukherjee P., “A canonical approach to the quantization of the damped harmonic oscillator”, J. Phys. A: Math. Gen., 35 (2002), 5591–5598, arXiv: quant-ph/0108055 | DOI | MR | Zbl