@article{SIGMA_2010_6_a57,
author = {Horatiu Nastase and Constantinos Papageorgakis},
title = {Bifundamental {Fuzzy} {2-Sphere} and {Fuzzy} {Killing} {Spinors}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a57/}
}
Horatiu Nastase; Constantinos Papageorgakis. Bifundamental Fuzzy 2-Sphere and Fuzzy Killing Spinors. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a57/
[1] Myers R. C., “Dielectric-branes”, J. High Energy Phys., 1999:12 (1999), 022, 41 pp., arXiv: hep-th/9910053 | DOI | MR
[2] Hoppe J., Quantum theory of a massless relativistic surface and a two-dimensional bound state problem, PhD Thesis, Massachusetts Institute of Technology, 1982 available at http://hdl.handle.net/1721.1/15717
[3] Hoppe J., “Diffeomorphism groups, quantization and $\mathrm{SU}(\infty)$”, Internat. J. Modern Phys. A, 4 (1989), 5235–5248 | DOI | MR | Zbl
[4] Madore J., “The fuzzy sphere”, Classial Quantum Gravity, 9 (1992), 69–88 | DOI | MR
[5] Iso S., Kimura Y., Tanaka K., Wakatsuki K., “Noncommutative gauge theory on fuzzy sphere from matrix model”, Nuclear Phys. B, 604 (2001), 121–147, arXiv: hep-th/0101102 | DOI | MR | Zbl
[6] Dasgupta K., Sheikh-Jabbari M. M., Van Raamsdonk M., “Matrix perturbation theory for M-theory on a PP-wave”, J. High Energy Phys., 2002:5 (2002), 056, 52 pp., arXiv: hep-th/0205185 | DOI | MR
[7] Dasgupta K., Sheikh-Jabbari M. M., Van Raamsdonk M., “Protected multiplets of M-theory on a plane wave”, J. High Energy Phys., 2002:9 (2002), 021, 41 pp., arXiv: hep-th/0207050 | DOI | MR
[8] Papageorgakis C., Ramgoolam S., Toumbas N., “Noncommutative geometry, quantum effects and DBI-scaling in the collapse of D0-D2 bound states”, J. High Energy Phys., 2006:1 (2006), 030, 31 pp., arXiv: hep-th/0510144 | DOI | MR | Zbl
[9] Nastase H., Papageorgakis C., Ramgoolam S., “The fuzzy $S^2$ structure of M2-M5 systems in ABJM membrane theories”, J. High Energy Phys., 2009:5 (2009), 123, 61 pp., arXiv: 0903.3966 | DOI | MR
[10] Nastase H., Papageorgakis C., “Fuzzy Killing spinors and supersymmetric D4 action on the fuzzy 2-sphere from the ABJM model”, J. High Energy Phys., 2009:12 (2009), 049, 52 pp., arXiv: 0908.3263 | DOI | MR
[11] Aharony O., Bergman O., Jafferis D. L., Maldacena J., “$N=6$ superconformal Chern–Simons-matter theories, M2-branes and their gravity duals”, J. High Energy Phys., 2008:10 (2008), 091, 38 pp., arXiv: 0806.1218 | DOI | MR
[12] Bagger J., Lambert N., “Modeling multiple M2-branes”, Phys. Rev. D, 75 (2007), 045020, 7 pp., arXiv: hep-th/0611108 | DOI | MR
[13] Bagger J., Lambert N., “Gauge symmetry and supersymmetry of multiple M2-branes”, Phys. Rev. D, 77 (2008), 065008, 6 pp., arXiv: 0711.0955 | DOI | MR
[14] Bagger J., Lambert N., “Comments on multiple M2-branes”, J. High Energy Phys., 2008:2 (2008), 105, 15 pp., arXiv: 0712.3738 | DOI | MR | Zbl
[15] Gustavsson A., “Algebraic structures on parallel M2-branes”, Nuclear Phys. B, 811 (2009), 66–76, arXiv: 0709.1260 | DOI | MR
[16] Gustavsson A., Rey S.-J., Enhanced $N=8$ supersymmetry of ABJM theory on R(8) and R(8)/Z(2), arXiv: 0906.3568
[17] Kwon O.-K., Oh P., Sohn J., “Notes on Supersymmetry Enhancement of ABJM theory”, J. High Energy Phys., 2009:8 (2009), 093, 22 pp., arXiv: 0906.4333 | DOI | MR
[18] Gomis J., Rodríguez-Gómez D., Van Raamsdonk M., Verlinde H., “A massive study of M2-brane proposals”, J. High Energy Phys., 2008:9 (2008), 113, 29 pp., arXiv: 0807.1074 | DOI | MR
[19] Hosomichi K., Lee K.-M., Lee S., Lee S., Park J., “$N=5,6$ superconformal Chern–Simons theories and M2-branes on orbifolds”, J. High Energy Phys., 2008:9 (2008), 002, 24 pp., arXiv: 0806.4977 | DOI | MR | Zbl
[20] Bena I., Warner N. P., “A harmonic family of dielectric flow solutions with maximal supersymmetry”, J. High Energy Phys., 2004:12 (2004), 021, 22 pp., arXiv: hep-th/0406145 | DOI | MR
[21] Lin H., Lunin O., Maldacena J. M., “Bubbling AdS space and 1/2 BPS geometries”, J. High Energy Phys., 2004:10 (2004), 025, 68 pp., arXiv: hep-th/0409174 | DOI | MR
[22] Terashima S., “On M5-branes in $N=6$ membrane action”, J. High Energy Phys., 2008:8 (2008), 080, 11 pp., arXiv: 0807.0197 | DOI | MR
[23] Hanaki K., Lin H., “M2-M5 systems in $N=6$ Chern–Simons theory”, J. High Energy Phys., 2008:9 (2008), 067, 14 pp., arXiv: 0807.2074 | DOI | MR
[24] Guralnik Z., Ramgoolam S., “On the polarization of unstable D0-branes into non-commutative odd spheres”, J. High Energy Phys., 2001:2 (2001), 032, 17 pp., arXiv: hep-th/0101001 | DOI | MR
[25] Ramgoolam S., “On spherical harmonics for fuzzy spheres in diverse dimensions”, Nuclear Phys. B, 610 (2001), 461–488, arXiv: hep-th/0105006 | DOI | MR | Zbl
[26] Ramgoolam S., “Higher dimensional geometries related to fuzzy odd-dimensional spheres”, J. High Energy Phys., 2002:10 (2002), 064, 29 pp., arXiv: hep-th/0207111 | DOI | MR
[27] Van Raamsdonk M., “Comments on the Bagger–Lambert theory and multiple M2-branes”, J. High Energy Phys., 2008:5 (2008), 105, 9 pp., arXiv: 0803.3803 | DOI | MR
[28] Hasebe K., Kimura Y., “Fuzzy supersphere and supermonopole”, Nuclear Phys. B, 709 (2005), 94–114, arXiv: hep-th/0409230 | DOI | MR | Zbl
[29] Grosse H., Reiter G., “The fuzzy supersphere”, J. Geom. Phys., 28 (1998), 349–383, arXiv: math-ph/9804013 | DOI | MR | Zbl
[30] Balachandran A. P., Kurkcuoglu S., Vaidya S., Lectures on fuzzy and fuzzy SUSY physics, arXiv: hep-th/0511114
[31] van Nieuwenhuizen P., “An introduction to simple supergravity and the Kaluza–Klein program”, Relativity, Groups and Topology, (Les Houches, 1983), v. II, North-Holland, Amsterdam, 1984, 823–932 | MR
[32] Eastaugh A., van Nieuwenhuizen P., Harmonics and spectra on general coset manifolds, Preprint ITP-SB-85-43, Kyoto Summer Institute 1985:0001
[33] van Nieuwenhuizen P., “The complete mass spectrum of $d=11$ supergravity compactified on $S_4$ and a general mass formula for arbitrary cosets $M_4$”, Classial Quantum Gravity, 2 (1985), 1–20 | DOI | MR | Zbl
[34] Gunaydin M., van Nieuwenhuizen P., Warner N. P., “General construction of the unitary representations of anti-de Sitter superalgebras and the spectrum of the $S^4$ compactification of 11-dimensional supergravity”, Nuclear Phys. B, 255 (1985), 63–92 | DOI | MR
[35] Nastase H., Vaman D., van Nieuwenhuizen P., “Consistency of the $\mathrm{AdS}_7\times S_4$ reduction and the origin of self-duality in odd dimensions”, Nuclear Phys. B, 581 (2000), 179–239, arXiv: hep-th/9911238 | DOI | MR | Zbl
[36] Van Nieuwenhuizen P., “Supergravity”, Phys. Rep., 68 (1981), 189–398 | DOI | MR
[37] Kim H. J., Romans L. J., van Nieuwenhuizen P., “Mass spectrum of chiral ten-dimensional $N=2$ supergravity on $S^5$”, Phys. Rev. D, 32 (1985), 389–399 | DOI | MR
[38] Wu Y. S., Zee A., “Membranes, higher Hopf maps, and phase interactions”, Phys. Lett. B, 207 (1988), 39–43 | DOI | MR
[39] Bernevig B. A., Hu J.-P., Toumbas N., Zhang S.-C., “Eight-dimensional quantum hall effect and “octonions””, Phys. Rev. Lett., 91 (2003), 236803, 4 pp., arXiv: cond-mat/0306045 | DOI
[40] Arkani-Hamed N., Cohen A. G., Georgi H., “(De)constructing dimensions”, Phys. Rev. Lett., 86 (2001), 4757–4761, arXiv: hep-th/0104005 | DOI | MR
[41] Andrews R. P., Dorey N., “Deconstruction of the Maldacena–Núñez compactification”, Nuclear Phys. B, 751 (2006), 304–341, arXiv: hep-th/0601098 | DOI | MR | Zbl
[42] Maldacena J. M., Nuñez C., “Supergravity description of field theories on curved manifolds and a no go theorem”, Internat. J. Modern Phys. A, 16 (2001), 822–855, arXiv: hep-th/0007018 | DOI | MR | Zbl
[43] Bershadsky M., Vafa C., Sadov V., “D-branes and topological field theories”, Nuclear Phys. B, 463 (1996), 420–434, arXiv: hep-th/9511222 | DOI | MR | Zbl
[44] Mukhi S., Papageorgakis C., “M2 to D2”, J. High Energy Phys., 2008:5 (2008), 085, 15 pp., arXiv: 0803.3218 | DOI | MR
[45] Maldacena J., Martelli D., The unwarped, resolved, deformed conifold: fivebranes and the baryonic branch of the Klebanov–Strassler theory, arXiv: 0906.0591