@article{SIGMA_2010_6_a56,
author = {Francesco D'Andrea and Pierre Martinetti},
title = {A~View on {Optimal} {Transport} from {Noncommutative} {Geometry}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a56/}
}
Francesco D'Andrea; Pierre Martinetti. A View on Optimal Transport from Noncommutative Geometry. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a56/
[1] Ambrosio L., “Lecture notes on optimal transport problems”, Mathematical Aspects of Evolving Interfaces (Funchal, 2000), Lecture Notes in Math., 1812, Springer, Berlin, 2003, 1–52 | MR | Zbl
[2] Azagra D., Ferrera J., López-Mesas F., Rangel Y., “Smooth approximation of Lipschitz functions on Riemannian manifolds”, J. Math. Anal. Appl., 326 (2007), 1370–1378, arXiv: math.DG/0602051 | DOI | MR | Zbl
[3] Bratteli O., Robinson D. W., Operator algebras and quantum statistical mechanics. 1. $C^*$- and $W^*$-algebras, symmetry groups, decomposition of states, Texts and Monographs in Physics, 2nd ed., Springer-Verlag, New York, 1987 | MR | Zbl
[4] Biane P., Voiculescu D., “A free probability analogue of the Wasserstein metric on the trace-state space”, Geom. Funct. Anal., 11 (2001), 1125–1138, arXiv: math.OA/0006044 | DOI | MR | Zbl
[5] Bimonte G., Lizzi F., Sparano G., “Distances on a lattice from non-commutative geometry”, Phys. Lett. B, 341 (1994), 139–146, arXiv: hep-lat/9404007 | DOI | MR
[6] Brenier Y., “Extended Monge–Kantorovich theory”, Optimal Transportation and Applications (Martina Franca, 2001), Lecture Notes in Math., 1813, Springer, Berlin, 2003, 91–121 | MR
[7] Cagnache E., D'Andrea F., Martinetti P., Wallet J. C., The Spectral distance in the Moyal plane, arXiv: 0912.0906 | Zbl
[8] Chamseddine A. H., Connes A., Marcolli M., “Gravity and the standard model with neutrino mixing”, Adv. Theor. Math. Phys., 11 (2007), 991–1089, arXiv: hep-th/0610241 | MR | Zbl
[9] Chavel I., Riemannian geometry – a modern introduction, Cambridge Tracts in Mathematics, 108, Cambridge University Press, Cambridge, 1993 | MR | Zbl
[10] Connes A., “Compact metric spaces, Fredholm modules, and hyperfiniteness”, Ergodic Theory Dynam. Systems, 9 (1989), 207–220 | DOI | MR | Zbl
[11] Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994 | MR | Zbl
[12] Connes A., “Noncommutative geometry and reality”, J. Math. Phys., 36 (1995), 6194–6231 | DOI | MR | Zbl
[13] Connes A., “Gravity coupled with matter and the foundation of non-commutative geometry”, Comm. Math. Phys., 182 (1996), 155–176 | DOI | MR | Zbl
[14] Connes A., “A unitary invariant in Riemannian geometry”, Int. J. Geom. Methods Mod. Phys., 5 (2008), 1215–1242, arXiv: 0810.2091 | DOI | MR | Zbl
[15] Connes A., Lott J., “The metric aspect of noncommutative geometry”, New symmetry principles in quantum field theory (Cargèse, 1991), NATO Adv. Sci. Inst. Ser. B Phys., 295, Plenum, New York, 1992, 53–93 | MR
[16] Connes A., Marcolli M., Noncommutative geometry, quantum fields and motives, American Mathematical Society Colloquium Publications, 55, American Mathematical Society, Providence, RI; Hindustan Book Agency, New Delhi, 2008 | MR | Zbl
[17] Doplicher S., Fredenhagen K., Roberts J. E., “Spacetime quantization induced by classical gravity”, Phys. Lett. B, 331 (1994), 39–44 | DOI | MR
[18] Doplicher S., Fredenhagen K., Roberts J. E., “The quantum structure of spacetime at the Planck scale and quantum fields”, Comm. Math. Phys., 172 (1995), 187–220, arXiv: hep-th/0303037 | DOI | MR | Zbl
[19] Evans L. C., Gangbo W., Differential equations methods for the Monge–Kantorevich mass transfer problem, Mem. Amer. Math. Soc., 137, no. 653, 1999 | MR
[20] Gayral V., Gracia-Bondí{a} J. M., Iochum B., Schücker T., Varilly J. C., “Moyal planes are spectral triples”, Comm. Math. Phys., 246 (2004), 569–623 | DOI | MR | Zbl
[21] Givens C. R., Shortt R. M., “A class of Wasserstein metrics for probability distributions”, Michigan Math. J., 31 (1984), 231–240 | DOI | MR | Zbl
[22] Goodearl K. R., Notes on real and complex $C^*$-algebras, Shiva Mathematics Series, 5, Shiva Publishing Ltd., Nantwich, 1982 | MR | Zbl
[23] Gracia-Bondí{a} J. M., Varilly J. C., Figueroa H., Elements of noncommutative geometry, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Boston, Inc., Boston, MA, 2001 | MR | Zbl
[24] Greene R. E., Wu H., “$C^\infty$ approximations of convex, subharmonic, and plurisubharmonic functions”, Ann. Sci. École Norm. Sup. (4), 12 (1979), 47–84 http://www.numdam.org/item?id=ASENS_1979_4_12_1_47_0 | MR | Zbl
[25] Gromov M., Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, 152, Birkhäuser Boston, Inc., Boston, MA, 1999 | MR | Zbl
[26] Iochum B., Krajewski T., Martinetti P., “Distances in finite spaces from noncommutative geometry”, J. Geom. Phys., 37 (2001), 100–125, arXiv: hep-th/9912217 | DOI | MR | Zbl
[27] Kadison R. V., Ringrose J. R., Fundamentals of the theory of operator algebras, v. II, Pure and Applied Mathematics, 100, Advanced theory, Academic Press, Inc., Orlando, FL, 1986 | MR | Zbl
[28] Kantorovich L. V., “On the transfer of masses”, Dokl. Akad. Nauk. SSSR, 37 (1942), 227–229
[29] Kantorovich L. V., Rubinstein G. S., “On a space of totally additive functions”, Vestnik Leningrad. Univ., 13:7 (1958), 52–59 | MR | Zbl
[30] Latrémolière F., “Bounded-Lipschitz distances on the state space of a $C^*$-algebra”, Taiwanese J. Math., 11 (2007), 447–469 | MR | Zbl
[31] Martinetti P., Distances en géométrie non-commutative, PhD Thesis, arXiv: math-ph/0112038
[32] Martinetti P., “Carnot–Carathéodory metric and gauge fluctuations in noncommutative geometry”, Comm. Math. Phys., 265 (2006), 585–616, arXiv: hep-th/0506147 | DOI | MR | Zbl
[33] Martinetti P., “Spectral distance on the circle”, J. Funct. Anal., 255 (2008), 1575–1612, arXiv: math.OA/0703586 | DOI | MR | Zbl
[34] Martinetti P., “Smoother than a circle or how noncommutative geometry provides the torus with an egocentred metric”, Modern Trends in Geometry and Topology (Deva, 2005), Cluj Univ. Press, Cluj-Napoca, 2006, 283–293, arXiv: hep-th/0603051 | MR | Zbl
[35] Martinetti P., Wulkenhaar R., “Discrete Kaluza–Klein from scalar fluctuations in noncommutative geometry”, J. Math. Phys., 43 (2002), 182–204, arXiv: hep-th/0104108 | DOI | MR | Zbl
[36] Monge G., Mémoire sur la Théorie des Déblais et des Remblais, Histoire de l'Acad. des Sciences de Paris, 1781
[37] Nash J., “$C^1$-isometric imbeddings”, Ann. of Math. (2), 60 (1954), 383–396 | DOI | MR | Zbl
[38] Nash J., “The imbedding problem for Riemannian manifolds”, Ann. of Math. (2), 63 (1956), 20–63 | DOI | MR | Zbl
[39] Rieffel M. A., “Metric on state spaces”, Doc. Math., 4 (1999), 559–600, arXiv: math.OA/9906151 | MR | Zbl
[40] Rieffel M. A., “Compact quantum metric spaces”, Operator Algebras, Quantization, and Noncommutative Geometry, Contemp. Math., 365, Amer. Math. Soc., Providence, RI, 2004, 315–330, arXiv: math.OA/0308207 | MR | Zbl
[41] Rieffel M. A., “Gromov–Hausdorff distance for quantum metric spaces”, Mem. Amer. Math. Soc., 168, no. 796, 2004, 1–65, arXiv: math.OA/0011063 | MR
[42] Roe J., Index theory, coarse geometry, and topology of manifolds, CBMS Regional Conference Series in Mathematics, 90, American Mathematical Society, Providence, RI, 1996 | MR | Zbl
[43] Villani C., Topics in optimal transportation, Graduate Studies in Mathematics, 58, American Mathematical Society, Providence, RI, 2003 | MR | Zbl
[44] Villani C., Optimal transport. Old and new, Grundlehren der Mathematischen Wissenschaften, 338, Springer-Verlag, Berlin, 2009 | MR | Zbl