@article{SIGMA_2010_6_a55,
author = {Slawomir Klimek and Matt McBride},
title = {A~Note on {Dirac} {Operators} on the {Quantum} {Punctured} {Disk}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a55/}
}
Slawomir Klimek; Matt McBride. A Note on Dirac Operators on the Quantum Punctured Disk. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a55/
[1] Atiyah M. F., Patodi V. K., Singer I. M., “Spectral asymmetry and Riemannian geometry. I”, Math. Proc. Cambridge Philos. Soc., 77 (1975), 43–69 | DOI | MR | Zbl
[2] Booß-Bavnbek B., Wojciechowski K. P., Elliptic boundary problems for Dirac operators, Mathematics: Theory Applications, Birkhäuser Boston, Inc., Boston, MA, 1993 | MR | Zbl
[3] Carey A. L., Klimek S., Wojciechowski K. P., Dirac operators on noncommutative manifolds with boundary, arXiv: 0901.0123
[4] Carey A. L., Phillips J., Rennie A., A noncommutative Atiyah–Patodi–Singer index theorem in KK-theory, arXiv: 0711.3028
[5] Connes A., Non-commutative differential geometry, Academic Press, 1994 | Zbl
[6] Conway J., Subnormal operators, Research Notes in Mathematics, 51, Pitman, Boston, Mass., London, 1981 | MR | Zbl
[7] Halmos P. R., Sunder V. S., Bounded integral operators on $L^2$ spaces, Results in Mathematics and Related Areas, 96, Springer-Verlag, Berlin, New York, 1978 | MR
[8] Klimek S., Lesniewski A., “Quantum Riemann surfaces. III. The exceptional cases”, Lett. Math. Phys., 32 (1994), 45–61 | DOI | MR | Zbl
[9] Klimek S., McBride M., D-bar operators on quantum domains, arXiv: 1001.2216