@article{SIGMA_2010_6_a54,
author = {Aristophanes Dimakis and Folkert M\"uller-Hoissen},
title = {Bidifferential {Calculus} {Approach} to {AKNS} {Hierarchies} and {Their} {Solutions}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a54/}
}
TY - JOUR AU - Aristophanes Dimakis AU - Folkert Müller-Hoissen TI - Bidifferential Calculus Approach to AKNS Hierarchies and Their Solutions JO - Symmetry, integrability and geometry: methods and applications PY - 2010 VL - 6 UR - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a54/ LA - en ID - SIGMA_2010_6_a54 ER -
%0 Journal Article %A Aristophanes Dimakis %A Folkert Müller-Hoissen %T Bidifferential Calculus Approach to AKNS Hierarchies and Their Solutions %J Symmetry, integrability and geometry: methods and applications %D 2010 %V 6 %U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a54/ %G en %F SIGMA_2010_6_a54
Aristophanes Dimakis; Folkert Müller-Hoissen. Bidifferential Calculus Approach to AKNS Hierarchies and Their Solutions. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a54/
[1] Dimakis A., Müller-Hoissen F., “Bidifferential graded algebras and integrable systems”, Discrete Contin. Dyn. Syst. Suppl., 2009 (2009), 208–219, arXiv: 0805.4553 | MR | Zbl
[2] Dimakis A., Müller-Hoissen F., “Solutions of matrix NLS systems and their discretisations: a unified treatment”, Inverse Problems, 26 (2010), 095007, 55 pp., arXiv: 1001.0133 | DOI | MR
[3] Nijhoff F. W., “Linear integral transformations and hierarchies of integrable nonlinear evolution equations”, Phys. D, 31 (1988), 339–388 | DOI | MR | Zbl
[4] Fuchssteiner B., Fokas A. S., “Symplectic structures, their Bäcklund transformations and hereditary symmetries”, Phys. D, 4 (1981), 47–66 | DOI | MR
[5] Verovsky J. M., “Negative powers of Olver recursion operators”, J. Math. Phys., 32 (1991), 1733–1736 | DOI | MR
[6] Tracy C. A., Widom H., “Fredholm determinants and the mKdV/sinh-Gordon hierarchies”, Comm. Math. Phys., 179 (1996), 1–9, arXiv: solv-int/9506006 | DOI | MR
[7] Ji J., Zhang J.-B., Zhang D.-J., “Soliton solutions for a negative order AKNS equation hierarchy”, Commun. Theor. Phys., 52 (2009), 395–397 | DOI | MR | Zbl
[8] Dorfmeister J., Gradl H., Szmigielski J., “Systems of PDEs obtained from factorization in loop groups”, Acta Appl. Math., 53 (1998), 1–58, arXiv: solv-int/9801009 | DOI | MR | Zbl
[9] Kamchatnov A. M., Pavlov M. V., “On generating functions in the AKNS hierarchy”, Phys. Lett. A, 301 (2002), 269–274, arXiv: nlin.SI/0208025 | DOI | MR | Zbl
[10] Aratyn H., Ferreira L. A., Gomes J. F., Zimerman A. H., “The complex sine-Gordon equation as a symmetry flow of the AKNS hierarchy”, J. Phys. A: Math. Gen., 33 (2000), L331–L337, arXiv: nlin.SI/0007002 | DOI | MR | Zbl
[11] Aratyn H., Gomes J. F., Zimerman A. H., “On negative flows of the AKNS hierarchy and a class of deformations of a bihamiltonian structure of hydrodynamic type”, J. Phys. A: Math. Gen., 39 (2006), 1099–1114, arXiv: nlin.SI/0507062 | DOI | MR | Zbl
[12] Hasimoto H., “A soliton on a vortex filament”, J. Fluid Mech., 51 (1972), 477–485 | DOI | Zbl
[13] Zakharov V. E., Takhtadzhyan L. A., “Equivalence of the nonlinear Schrödinger equation and the equation of a Heisenberg ferromagnet”, Theoret. and Math. Phys., 38 (1979), 17–23 | DOI | MR
[14] Ishimori Y., “A relationship between the Ablowitz–Kaup–Newell–Segur and Wadati–Konno–Ichikawa schemes of the inverse scattering method”, J. Phys. Soc. Japan, 51 (1982), 3036–3041 | DOI | MR
[15] Wadati M., Sogo K., “Gauge transformations in soliton theory”, J. Phys. Soc. Japan, 52 (1983), 394–398 | DOI | MR
[16] Tsuchida T., Wadati M., “Multi-field integrable systems related to WKI-type eigenvalue problems”, J. Phys. Soc. Japan, 68 (1999), 2241–2245, arXiv: solv-int/9907018 | DOI | MR | Zbl
[17] Faddeev L. D., Takhtajan L. A., Hamiltonian methods in the theory of solitons, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1987 | MR | Zbl
[18] van der Linden J., Capel H. W., Nijhoff F. W., “Linear integral equations and multicomponent nonlinear integrable systems. II”, Phys. A, 160 (1989), 235–273 | DOI | MR | Zbl
[19] Gerdjikov V., Grahovski G., “On $N$-wave and NLS type systems: generating operators and the gauge group action: the $so(5)$ case”, Proceedings of Fifth International Conference “Symmetry in Nonlinear Mathematical Physics” Part 1 (June 23–29, 2003, Kyiv), Proc. Inst. Math. NAS Ukraine, 50, eds. A. G. Nikitin, V. M. Boyko, R. O. Popovych and I. A. Yehorchenko, 2004, 388–395 | MR | Zbl
[20] Zakharov V. E., Shabat A. B., “A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I”, Funct. Anal. Appl., 8 (1974), 226–235 | DOI | Zbl
[21] Zakharov V., “The inverse scattering method”, Solitons, Topics in Current Physics, 17, eds. R. Bullough and P. Caudrey, Springer, Berlin, 1980, 243–285
[22] Konopelchenko B. G., “On the structure of integrable evolution equations”, Phys. Lett. A, 79 (1980), 39–43 | DOI | MR
[23] Gerdjikov V. S., Grahovski G. G., Kostov N. A., “Multicomponent NLS-type equations on symmetric spaces and their reductions”, Theoret. and Math. Phys., 144 (2005), 1147–1156 | DOI | MR | Zbl
[24] Gerdjikov V. S., Grahovski G. G., “Multi-component NLS models on symmetric spaces: spectral properties versus representation theory”, SIGMA, 6 (2010), 044, 29 pp., arXiv: 1006.0301 | DOI
[25] Dimakis A., Müller-Hoissen F., “Functional representations of integrable hierarchies”, J. Phys. Math. Gen., 39 (2006), 9169–9186, arXiv: nlin.SI/0603018 | DOI | MR | Zbl
[26] Bogdanov L. V., Konopelchenko B. G., “Analytic-bilinear approach to integrable hierarchies. II. Multicomponent KP and 2D Toda lattice hierarchies”, J. Math. Phys., 39 (1998), 4701–4728, arXiv: solv-int/9705009 | DOI | MR | Zbl
[27] Konopelchenko B., Strampp W., “The AKNS hierarchy as symmetry constraint of the KP hierarchy”, Inverse Problems, 7 (1991), L17–L24 | DOI | MR | Zbl
[28] Athorne C., Fordy A., “Generalised KdV and MKdV equations associated with symmetric spaces”, J. Phys. A: Math. Gen., 20 (1987), 1377–1386 | DOI | MR | Zbl
[29] Horn R. A., Johnson C. R., Topics in matrix analysis, Cambridge University Press, Cambridge, 1991 | MR
[30] Cherednik I., Basic methods of soliton theory, Advanced Series in Mathematical Physics, 25, World Scientific Publishing Co., Inc., River Edge, NJ, 1996 | MR | Zbl
[31] Golubchik I. Z., Sokolov V. V., “Generalized Heisenberg equations on $\mathbb Z$-graded Lie algebras”, Theoret. and Math. Phys., 120 (1999), 1019–1025 | DOI | MR | Zbl
[32] Rabelo M., “On equations which describe pseudospherical surfaces”, Stud. Appl. Math., 81 (1989), 221–248 | MR | Zbl
[33] Beals R., Rabelo M., Tenenblat K., “Bäcklund transformations and inverse scattering solutions for some pseudospherical surface equations”, Stud. Appl. Math., 81 (1989), 125–151 | MR | Zbl
[34] Sakovich A., Sakovich S., “On transformations of the Rabelo equations”, SIGMA, 3 (2007), 086, 8 pp., arXiv: 0705.2889 | DOI | MR | Zbl
[35] Schäfer T., Wayne C. E., “Propagation of ultra-short optical pulses in cubic nonlinear media”, Phys. D, 196 (2004), 90–105 | DOI | MR | Zbl
[36] Sakovich A., Sakovich S., “The short pulse equation is integrable”, J. Phys. Soc. Japan, 74 (2005), 239–241, arXiv: nlin.SI/0409034 | DOI | MR | Zbl
[37] Sakovich A., Sakovich S., “Solitary wave solutions of the short pulse equation”, J. Phys. A: Math. Gen., 39 (2006), L361–L367, arXiv: nlin.SI/0601019 | DOI | MR | Zbl
[38] Brunelli J. C., “The bi-Hamiltonian structure of the short pulse equation”, Phys. Lett. A, 353 (2006), 475–478, arXiv: nlin.SI/0601014 | DOI | MR | Zbl
[39] Kuetche V. K., Bouetou T. B., Kofane T. C., “On two-loop soliton solution of the Schäfer–Wayne short-pulse equation using Hirota's method and Hodnett–Moloney approach”, J. Phys. Soc. Japan, 76 (2007), 024004, 7 pp. | DOI
[40] Kuetche V. K., Bouetou T. B., Kofane T. C., “On exact $N$-loop soliton solution to nonlinear coupled dispersionless evolution equations”, Phys. Lett. A, 372 (2008), 665–669 | DOI | MR
[41] Parkes E. J., “Some periodic and solitary travelling-wave solutions of the short-pulse equation”, Chaos Solitons Fractals, 38 (2008), 154–159 | DOI | MR | Zbl
[42] Pietrzyk M., Kanattsikov I., Bandelow U., “On the propagation of vector ultra-short pulses”, J. Nonlinear Math. Phys., 15 (2008), 162–170 | DOI | MR | Zbl
[43] Matsuno Y., Soliton and periodic solutions of the short pulse model equation, arXiv: 0912.2576 | MR
[44] Sakovich S., “Integrability of the vector short pulse equation”, J. Phys. Soc. Japan, 77 (2008), 123001, 4 pp., arXiv: 0801.3179 | DOI