Cosmological Symmetry Breaking and Generation of Electromagnetic Field
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Cosmological phase transitions accompanied by some kind of symmetry breaking would cause the creation of topological defects and the resulting production of primordial magnetic field. Moreover, such a procedure inevitably affects the cosmic background radiation and it may be observed today. Motivated by the existence of stabilized embedded defects in the standard model of elementary interactions, we discuss their application to the cosmological electromagnetic field generation.
Keywords: cosmology; defect; pion string; magnetic field.
@article{SIGMA_2010_6_a52,
     author = {Michiyasu Nagasawa},
     title = {Cosmological {Symmetry} {Breaking} and {Generation} of {Electromagnetic} {Field}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a52/}
}
TY  - JOUR
AU  - Michiyasu Nagasawa
TI  - Cosmological Symmetry Breaking and Generation of Electromagnetic Field
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a52/
LA  - en
ID  - SIGMA_2010_6_a52
ER  - 
%0 Journal Article
%A Michiyasu Nagasawa
%T Cosmological Symmetry Breaking and Generation of Electromagnetic Field
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a52/
%G en
%F SIGMA_2010_6_a52
Michiyasu Nagasawa. Cosmological Symmetry Breaking and Generation of Electromagnetic Field. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a52/

[1] Kibble T. W. B., “Topology of cosmic domains and strings”, J. Phys. A: Math. Gen., 9 (1976), 1387–1398 ; Vilenkin A., Shellard E. P. S., Cosmic strings and other topological defects, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1994 | DOI | Zbl | MR | Zbl

[2] Nambu Y., “String-like configurations in the Weinberg–Salam theory”, Nuclear Phys. B, 130 (1977), 505–515 ; Huang K., Tipton R., “Vortex excitations in the Weinberg–Salam theory”, Phys. Rev. D, 23 (1981), 3050–3057 ; Manton N., “Topology in the Weinberg–Salam theory”, Phys. Rev. D, 28 (1983), 2019–2026 ; Vachaspati T., Barriola M., “A new class of defects”, Phys. Rev. Lett., 69 (1992), 1867–1870 ; Barriola M., Vachaspati T., Bucher M., “Embedded defects”, Phys. Rev. D, 50 (1994), 2819–2825, arXiv: ; Achucarro A., Vachaspati T., “Semilocal and electroweak strings”, Phys. Rep., 327 (2000), 347–426, arXiv: hep-th/9306120hep-ph/9904229 | DOI | MR | DOI | DOI | MR | DOI | MR | Zbl | DOI | DOI

[3] Nagasawa M., Brandenberger R., “Stabilization of embedded defects by plasma effects”, Phys. Lett. B, 467 (1999), 205–210, arXiv: hep-ph/9904261 | DOI

[4] Kulsrud R. M., Zweibel E. G., “On the origin of cosmic magnetic fields”, Rep. Prog. Phys., 71 (2008), 046901, 33 pp., arXiv: 0707.2783 | DOI

[5] Zhang X., Huang T., Brandenberger R., “Pion and $\eta'$ strings”, Phys. Rev. D, 58 (1998), 027702, 3 pp., arXiv: hep-ph/9711452 | DOI

[6] Nagasawa M., Brandenberger R., “Stabilization of the electroweak $Z$ string in the early Universe”, Phys. Rev. D, 67 (2003), 043504, 7 pp., arXiv: hep-ph/0207246 | DOI

[7] Axenides M., Perivolaropoulos L., “Topological defects with a nonsymmetric core”, Phys. Rev. D, 56 (1997), 1973–1981, arXiv: ; Axenides M., Perivolaropoulos L., Trodden M., “Phase transitions in the core of global embedded defects”, Phys. Rev. D, 58 (1998), 083505, 6 pp., arXiv: ; Axenides M., Perivolaropoulos L., Tomaras T. N., “Core phase structure of cosmic strings and monopoles”, Phys. Rev. D, 58 (1998), 103512, 5 pp., arXiv: hep-ph/9702221hep-ph/9801232hep-ph/9803355 | DOI | DOI | DOI

[8] Mao H., Li Y., Nagasawa M., Zhang X., Huang T., “Signal of the pion string at high-energy collisions”, Phys. Rev. C, 71 (2005), 014902, 7 pp., arXiv: hep-ph/0404132 | DOI

[9] Witten E., “Superconducting strings”, Nuclear Phys. B, 249 (1985), 557–592 | DOI

[10] Ostriker J. P., Thompson C., Witten E., “Cosmological effects of superconducting strings”, Phys. Lett. B, 180 (1986), 231–239 ; Ostriker J. P., Thompson C., “Distortion of the cosmic background radiation by superconducting strings”, Astrophys. J. Lett., 323 (1987), L97–L101 ; Vachaspati T., “Cosmic sparks from superconducting strings”, Phys. Rev. Lett., 101 (2008), 141301, 4 pp., arXiv: 0802.0711 | DOI | DOI | DOI | MR

[11] Davis R. L., Shellard E. P. S., “Cosmic vortons”, Nuclear Phys. B, 323 (1989), 209–224 | DOI | MR

[12] Brandenberger R., Carter B., Davis A.-C., Trodden M., “Cosmic vortons and particle physics constraints”, Phys. Rev. D, 54 (1996), 6059–6071, arXiv: hep-ph/9605382 | DOI

[13] Huterer D., Vachaspati T., “Gravitational lensing by cosmic strings in the era of wide-field surveys”, Phys. Rev. D, 68 (2003), 041301(R), 4 pp., arXiv: astro-ph/0305006 | DOI

[14] Carroll S. M., Field G. B., Jackiw R., “Limits on a Lorentz- and parity-violating modification of electrodynamics”, Phys. Rev. D, 41 (1990), 1231–1240 | DOI

[15] Pisarski R. D., “Anomalous mesonic interactions near a chiral phase transition”, Phys. Rev. Lett., 76 (1996), 3084–3087, arXiv: hep-ph/9601316 | DOI

[16] Masperi L., Savaglio S., “Influence of strings with axionic content on the polarization of extragalactic radio sources”, Astropart. Phys., 3 (1995), 209–213, arXiv: ; Carroll S. M., Field G. B., “Is there evidence for cosmic anisotropy in the polarization of distant radio sources?”, Phys. Rev. Lett., 79 (1997), 2394–2397, arXiv: astro-ph/9411047astro-ph/9704263 | DOI | DOI

[17] Brandenberger R., Zhang X., “Anomalous global strings and primordial magnetic fields”, Phys. Rev. D, 59 (1999), 081301, 5 pp., arXiv: hep-ph/9808306 | DOI

[18] Kaplan D. B., Manohar A., “Anomalous vortices and electromagnetism”, Nuclear Phys. B, 302 (1988), 280–290 | DOI

[19] Vachaspati T., “Estimate of the primordial magnetic field helicity”, Phys. Rev. Lett., 87 (2001), 251302, 4 pp., arXiv: astro-ph/0101261 | DOI

[20] Biskamp D., Müller W.-C., “Decay laws for three-dimensional magnetohydrodynamic turbulence”, Phys. Rev. Lett., 83 (1999), 2195–2198, arXiv: ; Christensson M., Hindmarsh M., Brandenburg A., “Scaling laws in decaying helical hydromagnetic turbulence”, Astron. Nachr., 326 (2005), 393–399, arXiv: physics/9903028astro-ph/0209119 | DOI | DOI | Zbl

[21] Olesen P., “Inverse cascades and primordial magnetic fields”, Phys. Lett. B, 398 (1997), 321–325, arXiv: astro-ph/9610154 | DOI | MR