@article{SIGMA_2010_6_a51,
author = {Aiyalam P. Balachandran and Alberto Ibort and Giuseppe Marmo and Mario Martone},
title = {Quantum {Fields} on {Noncommutative} {Spacetimes:} {Theory} and {Phenomenology}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a51/}
}
TY - JOUR AU - Aiyalam P. Balachandran AU - Alberto Ibort AU - Giuseppe Marmo AU - Mario Martone TI - Quantum Fields on Noncommutative Spacetimes: Theory and Phenomenology JO - Symmetry, integrability and geometry: methods and applications PY - 2010 VL - 6 UR - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a51/ LA - en ID - SIGMA_2010_6_a51 ER -
%0 Journal Article %A Aiyalam P. Balachandran %A Alberto Ibort %A Giuseppe Marmo %A Mario Martone %T Quantum Fields on Noncommutative Spacetimes: Theory and Phenomenology %J Symmetry, integrability and geometry: methods and applications %D 2010 %V 6 %U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a51/ %G en %F SIGMA_2010_6_a51
Aiyalam P. Balachandran; Alberto Ibort; Giuseppe Marmo; Mario Martone. Quantum Fields on Noncommutative Spacetimes: Theory and Phenomenology. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a51/
[1] Doplicher S., Fredenhagen K., Roberts J. E., “Spacetime quantization induced by classical gravity”, Phys. Lett. B, 331 (1994), 33–44 | DOI | MR
[2] Seiberg N., Witten E., “String theory and noncommutative geometry”, J. High Energy Phys., 1999:9 (1999), 032, 93 pp., arXiv: hep-th/9908142 | DOI | MR
[3] Doplicher S., Fredenhagen K., Roberts J. E., “The quantum structure of spacetime at the Planck scale and quantum fields”, Comm. Math. Phys., 172 (1995), 187–220, arXiv: hep-th/0303037 | DOI | MR | Zbl
[4] Drinfel'd V. G., “Quasi-Hopf algebras”, Leningrad Math. J., 1 (1990), 1419–1457 | MR
[5] Chaichian M., Kulish P. P., Nishijima K., Tureanu A., “On a Lorentz-invariant interpretation of noncommutative space-time and its implications on noncommutative QFT”, Phys. Lett. B, 604 (2004), 98–102, arXiv: hep-th/0408069 | DOI | MR
[6] Wess J., “Deformed coordinates spaces: derivatives”, Mathematical, Theoretical and Phenomenological Challenges Beyond the Standard Model (Vrnjacka Banja, Serbia, 2003), eds. G. Djordjevic, L. Nesic and J. Wess, World Scientific, 2005, 122–128, arXiv: hep-th/0408080
[7] Balachandran A. P., Pinzul A., Quereshi B. A., “Twisted Poincaré invariant quantum field theories”, Phys. Rev. D, 77 (2008), 025021, 9 pp., arXiv: 0708.1779 | DOI | MR | Zbl
[8] Dito G., Sternheimer D., “Deformation quantization: genesis, developments and metamorphoses”, Deformation Quantization (Strasbourg, 2001), v. 1, IRMA Lect. Math. Theor. Phys., ed. G. Halbout, de Gruyter, Berlin, 2002, 9–54, arXiv: math.QA/02201168 | MR | Zbl
[9] Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1994 | MR | Zbl
[10] Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995 | MR | Zbl
[11] Aschieri P., Lectures on Hopf algebras, quantum groups and twists, arXiv: hep-th/0703013
[12] Galluccio S., Lizzi F., Vitale P., “Twisted noncommutative field theory with the Wick–Voros and Moyal products”, Phys. Rev. D, 78 (2008), 085007, 14 pp., arXiv: 0810.2095 | DOI | MR
[13] Aschieri P., Lizzi F., Vitale P., “Twisting all the way: from classical mechaincs to quantum fields”, Phys. Rev. D, 77 (2008), 025037, 16 pp., arXiv: 0708.3002 | DOI | MR
[14] Bahns D., Doplicher S., Fredenhagen K., Piacitelli G., “On the unitarity problem in space-time noncommutative theories”, Phys. Lett. B, 533 (2002), 178–181, arXiv: hep-th/0201222 | DOI | MR | Zbl
[15] Balachandran A. P., Govindarajan T. R., Mangano G., Pinzul A., Quereshi B. A., Vaidya S., “Statistics and UV-IR mixing with twisted Poincaré invariance”, Phys. Rev. D, 75 (2007), 045009, 7 pp., arXiv: hep-th/0608179 | DOI | MR
[16] Balachandran A. P., Martone M., “Twisted quantum fields on Moyal and Wick–Voros planes are inequivalent”, Modern Phys. Lett. A, 24 (2009), 1721–1730, arXiv: 0902.1247 | DOI | MR | Zbl
[17] Balachandran A. P., Ibort A., Marmo G., Martone M., “Inequivalence of QFT's on noncommutative spacetimes: Moyal versus Wick–Voros”, Phys. Rev. D, 81 (2010), 085017, 8 pp., arXiv: 0910.4779 | DOI | Zbl
[18] Grosse H., “On the construction of Möller operators for the nonlinear Schrödigner equation”, Phys. Lett. B, 86 (1979), 267–271 | DOI | MR
[19] Zamolodchikov A. B., Zamolodchikov Al. B., “Factorized $S$-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models”, Ann. Physics, 120 (1979), 253–291 | DOI | MR
[20] Faddeev L. D., “Quantum completely integrable models in field theory”, Mathematical Physics Reviews, Soviet Sci. Rev. Sect. C: Math. Phys. Rev., 1, Harwood Academic, Chur, 1980, 107–155 | MR
[21] Balachandran A. P., Pinzul A., Qureshi B. A., “UV-IR mixing in non-commutative plane”, Phys. Lett. B, 634 (2006), 434–436, arXiv: hep-th/0508151 | DOI | MR
[22] Balachandran A. P., Pinzul A., Queiroz A. R., “Twisted Poincaré invariance, noncommutative gauge theories and UV-IR mixing”, Phys. Lett. B, 668 (2008), 241–245, arXiv: 0804.3588 | DOI | MR
[23] Balachandran A. P., Ibort A., Marmo G., Martone M., Covariant quantum fields on noncommutative spacetimes, in preparation
[24] Balachandran A. P., Mangano G., Pinzul A., Vaidya S., “Spin and statistics on the Groenwald–Moyal plane: Pauli-forbidden levels and transitions”, Internat. J. Modern Phys. A, 21 (2006), 3111–3126, arXiv: hep-th/0508002 | DOI | MR | Zbl
[25] Balachandran A. P., Martone M., “Spacetime from symmetry: the Moyal plane from the Poincaré–Hopf algebra”, Modern Phys. Lett. A, 24 (2009), 1811–1821, arXiv: 0902.3409 | DOI | MR | Zbl
[26] Balachandran A. P., Pinzul A., Qureshi B. A., Vaidya S., “Twisted gauge and gravity theories on the Groenewold–Moyal plane”, Phys. Rev. D, 76 (2007), 105025, 10 pp., arXiv: 0708.0069 | DOI | MR
[27] Balachandran A. P., Pinzul A., Qureshi B. A., Vaidya S., “$S$ matrix on the Moyal plane: locality versus Lorentz invariance”, Phys. Rev. D, 77 (2008), 025020, 8 pp., arXiv: 0708.1379 | DOI | MR | Zbl
[28] Balachandran A. P., Qureshi B. A., “Poincaré quasi-Hopf symmetry and nonassociative spacetime algebra from twisted gauge theories”, Phys. Rev. D, 81 (2010), 065006, 6 pp., arXiv: 0903.0478 | DOI | Zbl
[29] Chu C.-S., Greene B. R., Shiu G., “Remarks on inflation and noncommutative geometry”, Modern Phys. Lett. A, 16 (2001), 2231–2240, arXiv: hep-th/0011241 | DOI | MR | Zbl
[30] Lizzi F., Mangano G., Miele G., Peloso M., “Cosmological perturbations and short distance physics from noncommutative geometry”, J. High Energy Phys., 2002:6 (2002), 049, 16 pp., arXiv: hep-th/0203099 | DOI | MR
[31] Brandenberger R., Ho P.-M., “Noncommutative spacetime, stringy spacetime uncertainty principle and density fluctuations”, Phys. Rev. D, 66 (2002), 023517, 10 pp., arXiv: hep-th/0203119 | DOI | MR
[32] Huang Q.-G., Li M., “CMB power spectrum from noncommutative spacetime”, J. High Energy Phys., 2003:6 (2003), 014, 7 pp., arXiv: hep-th/0304203 | DOI | MR
[33] Huang Q.-G., Li M., “Noncommutative inflation and the CMB multipoles”, J. Cosmol. Astropart. Phys., 2003:11 (2003), 001, 10 pp., arXiv: astro-ph/0308458 | DOI | MR
[34] Tsujikawa S., Maartens R., Branderberger R., “Noncommutative inflation and the CMB”, Phys. Lett. B, 574 (2003), 141–148, arXiv: astro-ph/0308169 | DOI | MR | Zbl
[35] Balachandran A. P., Queiroz A. R., Marques A. M., Teotonio-Sobrinho P., “Quantum fields with noncommutative target spaces”, Phys. Rev. D, 77 (2008), 105032, 11 pp., arXiv: 0706.0021 | DOI | MR | Zbl
[36] Barosi L., Brito F. A., Queiroz A. R., “Noncommutative field gas driven inflation”, J. Cosmol. Astropart. Phys., 2008:4 (2008), 005, 16 pp., arXiv: 0801.0810 | DOI | MR
[37] Fatollahi A. H., Hajirahimi M., “Noncommutative black-body radiation: implications on cosmic microwave background”, Europhys. Lett., 75 (2006), 542–547, arXiv: astro-ph/0607257 | DOI | MR
[38] Fatollahi A. H., Hajirahimi M., “Black-body radiation of noncommutative gauge fields”, Phys. Lett. B, 641 (2006), 381–385, arXiv: hep-th/0611225 | DOI | MR
[39] Akofor E., Balachandran A. P., Jo S. G., Joseph A., Qureshi B. A., “Direction-dependent CMB power spectrum and statistical anisotropy from noncommutative geometry”, J. High Energy Phys., 2008:5 (2008), 092, 21 pp., arXiv: 0710.5897 | DOI | Zbl
[40] Akofor E., Balachandran A. P., Joseph A., Pekowsky L., Qureshi B. A., “Constraints from cosmic microwave background on spacetime noncommutativity and causality violation”, Phys. Rev. D, 79 (2009), 063004, 5 pp., arXiv: 0806.2458 | DOI
[41] Dodelson S., Modern cosmology, Academic Press, San Diego, 2003
[42] Mukhanov V., Physical foundations of cosmology, Cambridge University Press, New York, 2005 | MR | Zbl
[43] Mukhanov V. F., Feldman H. A., Bradenberger R. H., “Theory of cosmological perturbations”, Phys. Rep., 215 (1992), 203–333 | DOI | MR
[44] Komatsu E. et al., “Five-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation”, Astrophys. J. Suppl., 180 (2009), 330–376, arXiv: 0803.0547 | DOI
[45] Dunkey J. et al., “Five-year Wilkinson microwave anisotropy probe (WMAP) observations: likelihoods and parameters from the WMAP data”, Astrophys. J. Suppl., 180 (2009), 306–329, arXiv: 0803.0586 | DOI
[46] Nolta M. R. et al., “Five-year Wilkinson microwave anisotropy probe (WMAP) observations: angular power spectra”, Astrophys. J. Suppl., 180 (2009), 296–305, arXiv: 0803.0593 | DOI
[47] Reichardte C. L. et al., “High resolution CMB power spectrum from the complete ACBAR data set”, Astrophys. J., 694 (2009), 1200–1219, arXiv: 0801.1491 | DOI
[48] Kuo C. L. et al., “Improved measurements of the CMB power spectrum with ACBAR”, Astrophys. J., 664 (2007), 687–701, arXiv: astro-ph/0611198 | DOI
[49] Kuo C. L. et al., “High resolution observations of the CMB power spectrum with ACBAR”, Astrophys. J., 600 (2004), 32–51, arXiv: astro-ph/0212289 | DOI
[50] Mason B. S. et al., “The anisotrpy of the microwave backgound to $I=3500$: deep field observations with the cosmic background imager”, Astrophys. J., 591 (2007), 540–555, arXiv: astro-ph/0205384 | DOI
[51] Sivers J. L. et al., “Implications of the cosmic background imager polarization data”, Astrophys. J., 660 (2007), 976–987, arXiv: astro-ph/0509203 | DOI
[52] Sivers J. L. et al., “Cosmological parameters from cosmic background imager observations and comparisons with BOOMERANG, DASI, and MAXIMA”, Astrophys. J., 591 (2003), 599–622, arXiv: astro-ph/0205387 | DOI
[53] Pearson T. J. et al., “The anisotropy of the microwave background to $I=3500$: mosaic observations with the cosmic background imager”, Astrophys. J., 591 (2003), 556–574, arXiv: astro-ph/0205388 | DOI
[54] Readhead A. C. S. et al., “Extended mosaic observations with the cosmic background imager”, Astrophys. J., 609 (2004), 498–512, arXiv: astro-ph/0402359 | DOI
[55] Chakraborty B., Gangopadhyay S., Hazra A. G., Sholtz F. G., “Twisted Galilean symmetry and the Pauli principle at low energies”, J. Phys. A: Math. Gen., 39 (2006), 9557–9572, arXiv: hep-th/0601121 | DOI | MR | Zbl
[56] Balachandran A. P., Joseph A., Padmanabhan P., Non-Pauli transitions from spacetime noncommutativity, arXiv: 1003.2250
[57] Back H. O. et al. [Borexino collaboration], “New experimental limits on violations of the Pauli exclusion principle obtained with the Borexino counting test facility”, Eur. Phys. J. C, 37 (2004), 421–431, arXiv: hep-ph/0406252 | DOI
[58] Barabash A. S., Kornoukhov V. N., Tsipenyuk Yu. M., Chapyzhnikov B. A., “Search for anomalous carbon atoms – evidence of violation of the Pauli principle during the period of nucleosynthesis”, JETP Lett., 68 (1998), 112–116 ; Arnold R. et al., “Testing the Pauli exclusion principle with the NEMO-2 detector”, Eur. Phys. J. A, 6 (1999), 361–366 | DOI | DOI
[59] Ramberg E., Snow G. A., “Experimental limit on a small violation of the Pauli principle”, Phys. Lett. B, 238 (1990), 438–411 | DOI
[60] Suzuki Y. et al. [Kamiokande collaboration], “Study of invisible nucleon decay, $N\to\nu\nu\bar\nu$, and a forbidden nuclear transition in the Kamiokande detector”, Phys. Lett. B, 311 (1993), 357–361 | DOI
[61] Bartalucci S. et al. [VIP collaboration], “New experimental limit on the Pauli exclusion principle violation by electrons”, Phys. Lett. B, 641 (2006), 18–22 | DOI
[62] Akofor E., Balachandran A. P., Jo S. G., Joseph A., “Quantum fields on the Groenwold–Moyal plane: $C$, $P$, $T$ and $CPT$”, J. High Energy Phys., 2007:8 (2007), 045, 14 pp., arXiv: 0706.1259 | DOI | MR
[63] Joseph A., “Particle phenomenology on noncommutative spacetime”, Phys. Rev. D, 79 (2009), 096004, 9 pp., arXiv: 0811.3972 | DOI
[64] Gibbons L. K. et al., “$CP$ and $CPT$ symmetry tests from the two-pion decays of the neutral kaon with the Fermilab E731 detector”, Phys. Rev. D, 55 (1997), 6625–6715 | DOI
[65] Angelopoulos A. et al. [CPLEAR collaboration], “A determination of the CPT violation parameter $\mathrm{Re}(\delta)$ from the semileptonic decay of strangeness tagged neutral kaons”, Phys. Lett. B, 444 (1998), 52–60 | DOI
[66] Lai A. et al. [NA48 collaboration], “Search for CP violation in $K^0\to3\pi^0$ decays”, Phys. Lett. B, 610 (2005), 165–176, arXiv: hep-ex/0408053 | DOI
[67] Bennett G. W. et al. [Muon (g-2) collaboration], “Search for Lorentz and $CPT$ violation effects in muon spin precession”, Phys. Rev. Lett., 100 (2008), 091602, 5 pp., arXiv: 0709.4670 | DOI
[68] Bailey J. et al. [CERN–Mainz–Daresbury collaboration], “Final report on the CERN muon storage ring including the anomalous magnetic moment and the electric dipole moment of the muon, and a direct test of relativistic time dilation”, Nuclear Phys. B, 150 (1979), 1–75 | DOI
[69] Carey R. M. et al., “New measurement of the anomalous magnetic moment of the positive muon”, Phys. Rev. Lett., 82 (1999), 1632–1635 | DOI
[70] Brown H. N. et al. [Muon (g-2) collaboration], “Precise measurement of the positive muon anomalous magnetic moment”, Phys. Rev. Lett., 86 (2001), 2227–2231, arXiv: hep-ex/0102017 | DOI