Linearization of Second-Order Ordinary Differential Equations by Generalized Sundman Transformations
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The linearization problem of a second-order ordinary differential equation by the generalized Sundman transformation was considered earlier by Duarte, Moreira and Santos using the Laguerre form. The results obtained in the present paper demonstrate that their solution of the linearization problem for a second-order ordinary differential equation via the generalized Sundman transformation is not complete. We also give examples which show that the Laguerre form is not sufficient for the linearization problem via the generalized Sundman transformation.
Keywords: linearization problem; generalized Sundman transformations; nonlinear second-order ordinary differential equations.
@article{SIGMA_2010_6_a50,
     author = {Warisa Nakpim and Sergey V. Meleshko},
     title = {Linearization of {Second-Order} {Ordinary} {Differential} {Equations} by {Generalized} {Sundman} {Transformations}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a50/}
}
TY  - JOUR
AU  - Warisa Nakpim
AU  - Sergey V. Meleshko
TI  - Linearization of Second-Order Ordinary Differential Equations by Generalized Sundman Transformations
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a50/
LA  - en
ID  - SIGMA_2010_6_a50
ER  - 
%0 Journal Article
%A Warisa Nakpim
%A Sergey V. Meleshko
%T Linearization of Second-Order Ordinary Differential Equations by Generalized Sundman Transformations
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a50/
%G en
%F SIGMA_2010_6_a50
Warisa Nakpim; Sergey V. Meleshko. Linearization of Second-Order Ordinary Differential Equations by Generalized Sundman Transformations. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a50/

[1] Meleshko S. V., Methods for constructing exact solutions of partial differential equations, Mathematical and Analytical Techniques with Applications to Engineering, Springer, New York, 2005 | MR | Zbl

[2] Ibragimov N. H., Elementary Lie group analysis and ordinary differential equations, Wiley Series in Mathematical Methods in Practice, 4, John Wiley Sons, Ltd., Chichester, 1999 | MR

[3] Lie S., “Classifikation und Integration von gewöhnlichen Differentialgleichungen zwischen $x$, $y$ die eine Gruppe von Transformationen gestatten”, Math. Ann., 32 (1888), 213–281 | DOI | MR

[4] Duarte L. G. S., Moreira I. C., Santos F. C., “Linearization under non-point transformations”, J. Phys. A: Math. Gen., 27 (1994), L739–L743 | DOI | MR | Zbl

[5] Euler N., Wolf T., Leach P. G. L., Euler M., “Linearisable third-order ordinary differential equations and generalised Sundman transformations: the case $X'''=0$”, Acta Appl. Math., 76 (2003), 89–115, arXiv: nlin.SI/0203028 | DOI | MR | Zbl

[6] Nakpim W., Meleshko S. V., “Linearization of third-order ordinary differential equations by generalized Sundman transformations: the case $X'''+\alpha X=0$”, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 1717–1723 | DOI | MR

[7] Berkovich L. M., “The integration of ordinary differential equations: factorization and transformations”, Math. Comput. Simulation, 57 (2001), 175–195 | DOI | MR | Zbl

[8] Berkovich L. M., Factorization and transformations of differential equations. Methods and applications, R Dynamics, Moscow, 2002 (in Russian)

[9] Karasu A., Leach P. G. L., “Nonlocal symmetries and integrable ordinary differential equations: $\ddot x{+}3x\dot x{+}x^3{=}0$ and its generalizations”, J. Math. Phys., 50 (2009), 073509, 17 pp. | DOI | MR