Peterson's Deformations of Higher Dimensional Quadrics
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We provide the first explicit examples of deformations of higher dimensional quadrics: a straightforward generalization of Peterson's explicit 1-dimensional family of deformations in $\mathbb C^3$ of 2-dimensional general quadrics with common conjugate system given by the spherical coordinates on the complex sphere $\mathbb S^2\subset\mathbb C^3$ to an explicit $(n-1)$-dimensional family of deformations in $\mathbb C^{2n-1}$ of $n$-dimensional general quadrics with common conjugate system given by the spherical coordinates on the complex sphere $\mathbb S^n\subset\mathbb C^{n+1}$ and non-degenerate joined second fundamental forms. It is then proven that this family is maximal.
Keywords: Peterson's deformation; higher dimensional quadric; common conjugate system.
@article{SIGMA_2010_6_a5,
     author = {Ion I. Dinc\u{a}},
     title = {Peterson's {Deformations} of {Higher} {Dimensional} {Quadrics}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a5/}
}
TY  - JOUR
AU  - Ion I. Dincă
TI  - Peterson's Deformations of Higher Dimensional Quadrics
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a5/
LA  - en
ID  - SIGMA_2010_6_a5
ER  - 
%0 Journal Article
%A Ion I. Dincă
%T Peterson's Deformations of Higher Dimensional Quadrics
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a5/
%G en
%F SIGMA_2010_6_a5
Ion I. Dincă. Peterson's Deformations of Higher Dimensional Quadrics. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a5/

[1] Berger E., Bryant R. L., Griffiths P. A., “The Gauss equations and rigidity of isometric embeddings”, Duke Math. J., 50 (1983), 803–892 | DOI | MR | Zbl

[2] Bianchi L., Lezioni di geometria differenziale, Vols. 1–4, ed. Nicola Zanichelli, Bologna, 1922; 1923; 1924; 1927

[3] Calapso P., “Intorno alle superficie applicabili sulle quadriche ed alle loro transformazioni”, Annali di Mat., 19:1 (1912), 61–82 | Zbl

[4] Cartan É., “Sur les variétés de courboure constante d'un espace euclidien ou non-euclidien”, Bull. Soc. Math. France, 47 (1919), 125–160 ; Cartan É., “Sur les variétés de courboure constante d'un espace euclidien ou non-euclidien”, Bull. Soc. Math. France, 48 (1920), 132–208 | MR | MR | Zbl

[5] Darboux G., Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, Vols. 1–4, Gauthier-Villars, Paris, 1894–1917 | Zbl

[6] Horn R. A., Johnson C. R., Matrix analysis, Cambridge University Press, Cambridge, 1985 | MR | Zbl

[7] Peterson K.-M., “Sur la déformation des surfaces du second ordre,”, Ann. Fac. Sci. Toulouse Sér. 2, 7:1 (1905), 69–107 | MR | Zbl