The Multitrace Matrix Model of Scalar Field Theory on Fuzzy $\mathbb CP^n$
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We perform a high-temperature expansion of scalar quantum field theory on fuzzy $\mathbb CP^n$ to third order in the inverse temperature. Using group theoretical methods, we rewrite the result as a multitrace matrix model. The partition function of this matrix model is evaluated via the saddle point method and the phase diagram is analyzed for various $n$. Our results confirm the findings of a previous numerical study of this phase diagram for $\mathbb CP^1$.
Keywords: matrix models; fuzzy geometry.
@article{SIGMA_2010_6_a49,
     author = {Christian S\"amann},
     title = {The {Multitrace} {Matrix} {Model} of {Scalar} {Field} {Theory} on {Fuzzy} $\mathbb CP^n$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a49/}
}
TY  - JOUR
AU  - Christian Sämann
TI  - The Multitrace Matrix Model of Scalar Field Theory on Fuzzy $\mathbb CP^n$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a49/
LA  - en
ID  - SIGMA_2010_6_a49
ER  - 
%0 Journal Article
%A Christian Sämann
%T The Multitrace Matrix Model of Scalar Field Theory on Fuzzy $\mathbb CP^n$
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a49/
%G en
%F SIGMA_2010_6_a49
Christian Sämann. The Multitrace Matrix Model of Scalar Field Theory on Fuzzy $\mathbb CP^n$. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a49/

[1] Berezin F. A., “General concept of quantization”, Comm. Math. Phys., 40 (1975), 153–174 | DOI | MR

[2] Madore J., “The fuzzy sphere”, Classical Quantum Gravity, 9 (1992), 69–87 | DOI | MR | Zbl

[3] Grosse H., Klimčík C., Prešnajder P., “Towards finite quantum field theory in noncommutative geometry”, Internat. J. Theoret. Phys., 35 (1996), 231–244, arXiv: hep-th/9505175 | DOI | MR | Zbl

[4] Steinacker H., “A non-perturbative approach to non-commutative scalar field theory”, J. High Energy Phys., 2005:3 (2005), 075, 39 pp., arXiv: ; Steinacker H., Quantization and eigenvalue distribution of noncommutative scalar field theory, arXiv: hep-th/0501174hep-th/0511076 | DOI | MR

[5] O'Connor D., Sämann C., “Fuzzy scalar field theory as a multitrace matrix model”, J. High Energy Phys., 2007:8 (2007), 066, 28 pp., arXiv: ; O'Connor D., Sämann C., A multitrace matrix model from fuzzy scalar field theory, arXiv: 0706.24930709.0387 | DOI | MR

[6] Garcia Flores F., O'Connor D., Martin X., “Simulating the scalar field on the fuzzy sphere”, PoS(LAT2005), 2005, 262, 6 pp., arXiv: ; Garcia Flores F., Martin X., O'Connor D., “Simulation of a scalar field on a fuzzy sphere”, Internat. J. Modern Phys. A, 24 (2009), 3917–3944, arXiv: hep-lat/06010120903.1986 | DOI | MR | Zbl

[7] Panero M., “Numerical simulations of a non-commutative theory: the scalar model on the fuzzy sphere”, J. High Energy Phys., 2007:5 (2007), 082, 20 pp., arXiv: hep-th/0608202 | DOI | MR

[8] Panero M., “Quantum field theory in a non-commutative space: theoretical predictions and numerical results on the fuzzy sphere”, SIGMA, 2 (2006), 081, 14 pp., arXiv: hep-th/0609205 | DOI | MR | Zbl

[9] Iuliu-Lazaroiu C., McNamee D., Sämann C., “Generalized Berezin quantization, Bergman metrics and fuzzy Laplacians”, J. High Energy Phys., 2008:9 (2008), 059, 60 pp., arXiv: 0804.4555 | DOI | MR

[10] Creutz M., “On invariant integration over $\mathrm{SU}(N)$”, J. Math. Phys., 19 (1978), 2043–2046 | DOI | MR | Zbl

[11] Maekawa T., “Formula for invariant integrations on $\mathrm{SU}(N)$”, J. Math. Phys., 26 (1985), 1910–1913 | DOI | MR | Zbl

[12] Aubert S., Lam C. S., “Invariant integration over the unitary group”, J. Math. Phys., 44 (2003), 6112–6131, arXiv: math-ph/0307012 | DOI | MR | Zbl

[13] Bars I., “$\mathrm{SU}(N)$ integral for the generating functional in lattice gauge theory”, J. Math. Phys., 21 (1980), 2678–2681 | DOI | MR

[14] Muskhelishvili N. I., Singular integral equations. Boundary problems of function theory and their application to mathematical physics, Noordhoff International Publishing, Leyden, 1977 | MR

[15] Di Francesco P., Ginsparg P. H., Zinn-Justin J., “2D gravity and random matrices”, Phys. Rep., 254 (1995), 1–133, arXiv: hep-th/9306153 | DOI | MR

[16] Brézin E., Itzykson C., Parisi G., Zuber J. B., “Planar diagrams”, Comm. Math. Phys., 59 (1978), 35–51 | DOI | MR | Zbl

[17] Das S. R., Dhar A., Sengupta A. M., Wadia S. R., “New critical behavior in $d=0$ large $N$ matrix models”, Modern Phys. Lett. A, 5 (1990), 1041–1056 | DOI | MR | Zbl

[18] Shishanin A. O., “Phases of the Goldstone multitrace matrix model in the large-$N$ limit”, Theoret. and Math. Phys., 152 (2007), 1258–1265 | DOI | MR | Zbl

[19] Cicuta G. M., Molinari L., Montaldi E., “Large-$N$ spontaneous magnetization in zero dimensions”, J. Phys. A: Math. Gen., 20 (1987), L67–L70 | DOI

[20] Gubser S. S., Sondhi S. L., “Phase structure of non-commutative scalar field theories”, Nuclear Phys. B, 605 (2001), 395–424, arXiv: hep-th/0006119 | DOI | MR | Zbl

[21] Das C. R., Digal S., Govindarajan T. R., “Spontaneous symmetry breakdown in fuzzy spheres”, Modern Phys. Lett. A, 24 (2009), 2693–2701, arXiv: 0801.4479 | DOI | Zbl

[22] Fulton W., Harris J., Representation theory. A first course, Graduate Texts in Mathematics, 129, Springer-Verlag, New York, 1991 | MR | Zbl