@article{SIGMA_2010_6_a48,
author = {Sven Heinemeyer and Myriam Mondrag\'on and George Zoupanos},
title = {Finite {Unification:} {Theory} and {Predictions}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a48/}
}
Sven Heinemeyer; Myriam Mondragón; George Zoupanos. Finite Unification: Theory and Predictions. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a48/
[1] Connes A., Douglas M. R., Schwarz A. S., “Noncommutative geometry and matrix theory: compactification on tori”, J. High Energy Phys., 1998:2 (1998), 003, 35 pp., arXiv: hep-th/9711162 | DOI | MR
[2] Maldacena J. M., “The large $N$ limit of superconformal field theories and supergravity”, Adv. Theor. Math. Phys., 2 (1998), 231–252, arXiv: hep-th/9711200 | MR | Zbl
[3] Mandelstam S., “Light-cone superspace and the ultraviolet finiteness of the $N=4$ model”, Nuclear Phys. B, 213 (1983), 149–168 | DOI | MR
[4] Brink L., Lindgren O., Nilsson B. E. W., “The ultraviolet finiteness of the $N=4$ Yang–Mills theory”, Phys. Lett. B, 123 (1983), 323–328 | DOI
[5] Bern Z., Carrasco J. J., Dixon L. J., Johansson H., Roiban R., “Ultraviolet behavior of $N=8$ supergravity at four loops”, Phys. Rev. Lett., 103 (2009), 081301, 4 pp., arXiv: 0905.2326 | DOI
[6] Kallosh R., “On UV finiteness of the four loop $N=8$ supergravity”, J. High Energy Phys., 2009:9 (2009), 116, 9 pp., arXiv: 906.3495 | DOI | MR | Zbl
[7] Bern Z., Carrasco J. J., Dixon L. J., Johansson H., Kosower D. A., Roiban R., “Cancellations beyond finiteness in $N=8$ supergravity at three loops”, Phys. Rev. Lett., 98 (2007), 161303, 4 pp., arXiv: hep-th/0702112 | DOI | Zbl
[8] Bern Z., Dixon L. J., Roiban R., “Is $N = 8$ supergravity ultraviolet finite?”, Phys. Lett. B, 644 (2007), 265–271, arXiv: hep-th/0611086 | DOI | MR
[9] Green M. B., Russo J. G., Vanhove P., “Ultraviolet properties of maximal supergravity”, Phys. Rev. Lett., 98 (2007), 131602, 4 pp., arXiv: hep-th/0611273 | DOI | MR
[10] Pati J. C., Salam A., “Is baryon number conserved?”, Phys. Rev. Lett., 31 (1973), 661–664 | DOI
[11] Georgi H., Glashow S. L., “Unity of all elementary particle forces”, Phys. Rev. Lett., 32 (1974), 438–441 | DOI
[12] Georgi H., Quinn H. R., Weinberg S., “Hierarchy of interactions in unified gauge theories”, Phys. Rev. Lett., 33 (1974), 451–454 | DOI
[13] Fritzsch H., Minkowski P., “Unified interactions of leptons and hadrons”, Ann. Physics, 93 (1975), 193–266 | DOI | MR
[14] Georgi H., “The state of the art – gauge theories”, Particles and Fields (Williamsburg, 1974), AIP Conference Proceedings, 23, ed. C. E. Carlson, American Institute of Physics, New York, 1974, 575–582
[15] Amaldi U., de Boer W., Furstenau H., “Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP”, Phys. Lett. B, 260 (1991), 447–455 | DOI
[16] Dimopoulos S., Georgi H., “Softly broken supersymmetry and $SU(5)$”, Nuclear Phys. B, 193 (1981), 150–162 | DOI
[17] Sakai N., “Naturalness in supersymmetric GUTs”, Zeit. Phys. C, 11 (1981), 153–157 | DOI
[18] Buras A. J., Ellis J. R., Gaillard M. K., Nanopoulos D. V., “Aspects of the grand unification of strong, weak and electromagnetic interactions”, Nuclear Phys. B, 135 (1978), 66–92 | DOI
[19] Kubo J., Mondragón M., Olechowski M., Zoupanos G., “Testing gauge-Yukawa-unified models by $M_t$”, Nuclear Phys. B, 479 (1996), 25–45, arXiv: hep-ph/9512435 | DOI
[20] Kubo J., Mondragón M., Zoupanos G., “Unification beyond GUTs: gauge Yukawa unification”, Acta Phys. Polon. B, 27 (1997), 3911–3944, arXiv: hep-ph/9703289 | MR
[21] Kobayashi T., Kubo J., Mondragón M., Zoupanos G., “Exact finite and gauge-Yukawa unified theories and their predictions”, Acta Phys. Polon. B, 30 (1999), 2013–2027
[22] Fayet P., “Spontaneous generation of massive multiplets and central charges in extended supersymmetric theories”, Nuclear Phys. B, 149 (1979), 137–169 | DOI | MR
[23] Decker R., Pestieau J., “Lepton self-mass, Higgs scalar and heavy-quark masses”, Nuovo Cimento Lett., 29 (1980), 560–564 | DOI
[24] Veltman M. J. G., “The infrared-ultraviolet connection”, Acta Phys. Polon. B, 12 (1981), 437–457
[25] Ferrara S., Girardello L., Palumbo F., “A general mass formula in broken supersymmetry”, Phys. Rev. D, 20 (1979), 403–408 | DOI | MR
[26] Chaichian M., Gonzalez Felipe R., Huitu K., “On quadratic divergences and the Higgs mass”, Phys. Lett. B, 363 (1995), 101–105, arXiv: hep-ph/9509223 | DOI | MR
[27] Abbiendi G. et al., “Search for the standard model Higgs boson at LEP”, Phys. Lett. B, 565 (2003), 61–75, arXiv: hep-ex/0306033 | DOI
[28] Pendleton B., Ross G. G., “Mass and mixing angle predictions from infrared fixed points”, Phys. Lett. B, 98 (1981), 291–294 | DOI
[29] Zimmermann W., “Infrared behavior of the coupling parameters in the standard model”, Phys. Lett. B, 308 (1993), 117–122 | DOI
[30] Hill C. T., “Quark and lepton masses from renormalization group fixed points”, Phys. Rev. D, 24 (1981), 691–703 | DOI
[31] Tevatron Electroweak Working Group, Combination of CDF and D0 Results on the mass of the top quark, arXiv: 0903.2503
[32] Schael S. et al., “Search for neutral MSSM Higgs bosons at LEP”, Eur. Phys. J. C, 47 (2006), 547–587, arXiv: hep-ex/0602042 | DOI
[33] Kapetanakis D., Mondragón M., Zoupanos G., “Finite unified models”, Z. Phys. C, 60 (1993), 181–185, arXiv: hep-ph/9210218 | DOI
[34] Mondragón M., Zoupanos G., “Finite unified theories and the top quark mass”, Nuclear Phys. B Proc. Suppl., 37 (1995), 98–105 | DOI
[35] Kubo J., Mondragón M., Zoupanos G., “Reduction of couplings and heavy top quark in the minimal SUSY GUT”, Nuclear Phys. B, 424 (1994), 291–307 | DOI | MR
[36] Kubo J., Mondragón M., Tracas N. D., Zoupanos G., “Gaug–Yukawa unification in asymptotically nonfree theories”, Phys. Lett. B, 342 (1995), 155–162, arXiv: hep-th/9409003 | DOI | MR
[37] Kubo J., Mondragón M., Shoda S., Zoupanos G., “Gauge–Yukawa unification in $SO(10)$ SUSY GUTs”, Nuclear Phys. B, 469 (1996), 3–20, arXiv: hep-ph/9512258 | DOI | MR
[38] Kubo J., Mondragón M., Zoupanos G., “Perturbative unification of soft supersymmetry-breaking terms”, Phys. Lett. B, 389 (1996), 523–532, arXiv: hep-ph/9609218 | DOI
[39] Zimmermann W., “Reduction in the number of coupling parameters”, Comm. Math. Phys., 97 (1985), 211–225 | DOI | MR
[40] Oehme R., Zimmermann W., “Relation between effective couplings for asymptotically free models”, Comm. Math. Phys., 97 (1985), 569–582 | DOI | MR
[41] Ma E., “Modified quantum chromodynamics: exact global color symmetry and asymptotic freedom”, Phys. Rev. D, 17 (1978), 623–628 | DOI
[42] Ma E., “Fixing the Higgs boson mass”, Phys. Rev. D, 31 (1985), 1143–1145 | DOI
[43] Lucchesi C., Piguet O., Sibold K., “Necessary and sufficient conditions for all order vanishing $\beta$-functions in supersymmetric Yang–Mills theories”, Phys. Lett. B, 201 (1988), 241–244 | DOI | MR
[44] Lucchesi C., Piguet O., Sibold K., “Vanishing $\beta$-functions in $N=1$ supersymmetric gauge theories”, Helv. Phys. Acta, 61 (1988), 321–344 | MR
[45] Lucchesi C., Zoupanos G., “All-order finiteness in $N=1$ SYM theories: criteria and applications”, Fortschr. Phys., 45 (1997), 129–143, arXiv: hep-ph/9604216 | DOI | MR | Zbl
[46] Ermushev A. V., Kazakov D. I., Tarasov O. V., “Finite $N=1$ supersymmetric grand unified theories”, Nuclear Phys. B, 281 (1987), 72–84 | DOI
[47] Kazakov D. I., “Finite $N=1$ SUSY gauge field theories”, Modern Phys. Lett. A, 2 (1987), 663–674 | DOI
[48] Schrempp B., Schrempp F., “A renormalization group invariant line and infrared attractive top-Higgs mass relation”, Phys. Lett. B, 299 (1993), 321–328 | DOI
[49] Schrempp B., “Infrared fixed points and fixed lines in the top-bottom-tau sector in supersymmetric grand unification”, Phys. Lett. B, 344 (1995), 193–200, arXiv: hep-ph/9411241 | DOI
[50] Schrempp B., Wimmer M., “Top quark and Higgs boson masses: interplay between infrared and ultraviolet physics”, Prog. Part. Nuclear Phys., 37 (1996), 1–90, arXiv: hep-ph/9606386 | DOI
[51] Jack I., Jones D. R. T., “Renormalization-group invariance and universal soft supersymmetry-breaking”, Phys. Lett. B, 349 (1995), 294–299, arXiv: hep-ph/9501395 | DOI | MR
[52] Hisano J., Shifman M. A., “Exact results for soft supersymmetry-breaking parameters in supersymmetric gauge theories”, Phys. Rev. D, 56 (1997), 5475–5482, arXiv: hep-ph/9705417 | DOI
[53] Jack I., Jones D. R. T., “The gaugino $\beta$-function”, Phys. Lett. B, 415 (1997), 383–389, arXiv: hep-ph/9709364 | DOI | MR
[54] Avdeev L. V., Kazakov D. I., Kondrashuk I. N., “Renormalizations in softly broken SUSY gauge theories”, Nuclear Phys. B, 510 (1998), 289–312, arXiv: hep-ph/9709397 | DOI | MR | Zbl
[55] Kazakov D. I., “Exploring softly broken SUSY theories via Grassmannian Taylor expansion”, Phys. Lett. B, 449 (1999), 201–206, arXiv: hep-ph/9812513 | DOI | MR
[56] Kazakov D. I., “Finiteness of soft terms in finite $N=1$ SUSY gauge theories”, Phys. Lett. B, 421 (1998), 211–216, arXiv: hep-ph/9709465 | DOI | MR
[57] Jack I., Jones D. R. T., Pickering A., “Renormalisation invariance and the soft $\beta$-functions”, Phys. Lett. B, 426 (1998), 73–77, arXiv: hep-ph/9712542 | DOI | MR | Zbl
[58] Kobayashi T., Kubo J., Zoupanos G., “Further all-loop results in softly-broken supersymmetric gauge theories”, Phys. Lett. B, 427 (1998), 291–299, arXiv: hep-ph/9802267 | DOI
[59] Yamada Y., “Two-loop renormalization group equations for soft supersymmetry-breaking scalar interactions: supergraph method”, Phys. Rev. D, 50 (1994), 3537–3545, arXiv: hep-ph/9401241 | DOI
[60] Delbourgo R., “Superfield perturbation theory and renormalization”, Nuovo Cimento A, 25 (1975), 646–656 | DOI
[61] Salam A., Strathdee J. A., “Feynman rules for superfields”, Nuclear Phys. B, 86 (1975), 142–152 | DOI | MR
[62] Fujikawa K., Lang W., “Perturbation calculations for the scalar multiplet in a superfield formulation”, Nuclear Phys. B, 88 (1975), 61–76 | DOI
[63] Grisaru M. T., Siegel W., Rocek M., “Improved methods for supergraphs”, Nuclear Phys. B, 159 (1979), 429–450 | DOI | MR
[64] Girardello L., Grisaru M. T., “Soft breaking of supersymmetry”, Nuclear Phys. B, 194 (1982), 65–76 | DOI | MR
[65] Jones D. R. T., Mezincescu L., Yao Y. P., “Soft breaking of two loop finite $N=1$ supersymmetric gauge theories”, Phys. Lett. B, 148 (1984), 317–322 | DOI
[66] Jack I., Jones D. R. T., “Soft supersymmetry breaking and finiteness”, Phys. Lett. B, 333 (1994), 372–379, arXiv: hep-ph/9405233 | DOI | MR
[67] Ibáñez L. E., Lüst D., “Duality-anomaly cancellation, minimal string unification and the effective low-energy Lagrangian of 4D strings”, Nuclear Phys. B, 382 (1992), 305–364, arXiv: hep-th/9202046 | DOI | MR
[68] Kaplunovsky V. S., Louis J., “Model-independent analysis of soft terms in effective supergravity and in string theory”, Phys. Lett. B, 306 (1993), 269–275, arXiv: hep-th/9303040 | DOI | MR
[69] Brignole A., Ibáñez L. E., Muñoz C., “Towards a theory of soft terms for the supersymmetric standard model”, Nuclear Phys. B, 422 (1994), 125–171, arXiv: hep-ph/9308271 | DOI
[70] Casas J. A., Lleyda A., Muñoz C., “Problems for supersymmetry breaking by the dilaton in strings from charge and color breaking”, Phys. Lett. B, 380 (1996), 59–67, arXiv: hep-ph/9601357 | DOI | MR
[71] Kawamura Y., Kobayashi T., Kubo J., “Soft scalar-mass sum rule in gauge-Yukawa unified models and its superstring interpretation”, Phys. Lett. B, 405 (1997), 64–70, arXiv: hep-ph/9703320 | DOI | MR
[72] Kobayashi T., Kubo J., Mondragón M., Zoupanos G., “Constraints on finite soft supersymmetry-breaking terms”, Nuclear Phys. B, 511 (1998), 45–68, arXiv: hep-ph/9707425 | DOI
[73] Novikov V. A., Shifman M. A., Vainshtein A. I., Zakharov V. I., “Instanton effects in supersymmetric theories”, Nuclear Phys. B, 229 (1983), 407–420 | DOI
[74] Novikov V. A., Shifman M. A., Vainshtein A. I., Zakharov V. I., “The beta function in supersymmetric gauge theories. Instantons versus traditional approach”, Phys. Lett. B, 166 (1986), 329–333 | DOI
[75] Shifman M. A., “Little miracles of supersymmetric evolution of gauge couplings”, Internat. J. Modern Phys. A, 11 (1996), 5761–5784, arXiv: hep-ph/9606281 | DOI | MR
[76] Oehme R., “Reduction and reparametrization of quantum field theories”, Progr. Theoret. Phys. Suppl., 1986, no. 86, 215–237 | DOI | MR
[77] Kubo J., Sibold K., Zimmermann W., “Higgs and top mass from reduction of couplings”, Nuclear Phys. B, 259 (1985), 331–350 | DOI
[78] Kubo J., Sibold K., Zimmermann W., “New results in the reduction of the standard model”, Phys. Lett. B, 220 (1989), 185–190 | DOI | MR
[79] Piguet O., Sibold K., “Reduction of couplings in the presence of parameters”, Phys. Lett. B, 229 (1989), 83–88 | DOI | MR
[80] Zimmermann W., “Reduction of couplings in massive models of quantum field theory”, Theoretical Physics. Fin de siècle (Wroclaw, 1998), Lecture Notes in Phys., 539, Springer, Berlin, 2000, 304–314 | DOI | MR | Zbl
[81] Wess J., Zumino B., “A Lagrangian model invariant under supergauge transformations”, Phys. Lett. B, 49 (1974), 52–54 | DOI
[82] Iliopoulos J., Zumino B., “Broken supergauge symmetry and renormalization”, Nuclear Phys. B, 76 (1974), 310–332 | DOI
[83] Parkes A., West P. C., “Finiteness in rigid supersymmetric theories”, Phys. Lett. B, 138 (1984), 99–104 | DOI | MR
[84] Rajpoot S., Taylor J. G., “On finite quantum field theories”, Phys. Lett. B, 147 (1984), 91–95 | DOI | MR
[85] Rajpoot S., Taylor J. G., “Toward finite quantum field theories”, Int. J. Theor. Phys., 25 (1986), 117–138 | DOI | Zbl
[86] West P., “The Yukawa $\beta$-function in $N=1$ rigid supersymmetric theories”, Phys. Lett. B, 137 (1984), 371–373 | DOI
[87] Jones D. R. T., Parkes A. J., “Search for a three-loop-finite chiral theory”, Phys. Lett. B, 160 (1985), 267–270 | DOI
[88] Jones D. R. T., Mezincescu L., “The chiral anomaly and a class of two-loop finite supersymmetric gauge theories”, Phys. Lett. B, 138 (1984), 293–295 | DOI
[89] Parkes A. J., “Three loop finiteness conditions in $N=1$ super-Yang–Mills”, Phys. Lett. B, 156 (1985), 73–79 | DOI | MR
[90] O'Raifeartaigh L., “Spontaneous symmetry breaking for chiral scalar superfields”, Nuclear Phys. B, 96 (1975), 331–352 | DOI | MR
[91] Fayet P., Iliopoulos J., “Spontaneously broken supergauge symmetries and goldstone spinors”, Phys. Lett. B, 51 (1974), 461–464 | DOI
[92] Ferrara S., Zumino B., “Transformation properties of the supercurrent”, Nuclear Phys. B, 87 (1975), 207–220 | DOI
[93] Piguet O., Sibold K., “The supercurrent in $N=1$ supersymmetrical Yang–Mills theories. I. The classical case”, Nuclear Phys. B, 196 (1982), 428–446 | DOI
[94] Piguet O., Sibold K., “The supercurrent in $N=1$ supersymmmetrical Yang–Mills theories. II. Renormalization”, Nuclear Phys. B, 196 (1982), 447–460 | DOI
[95] Piguet O., Sibold K., “Nonrenormalization theorems of chiral anomalies and finiteness in supersymmetric Yang–Mills theories”, Internat. J. Modern Phys. A, 1 (1986), 913–942 | DOI | MR
[96] Piguet O., Sibold K., “Non-renormalization theorems of chiral anomalies and finiteness”, Phys. Lett. B, 177 (1986), 373–376 | DOI | MR
[97] Ensign P., Mahanthappa K. T., “The supercurrent and the Adler–Bardeen theorem in coupled supersymmetric Yang–Mills theories”, Phys. Rev. D, 36 (1987), 3148–3171 | DOI
[98] Piguet O., Supersymmetry, ultraviolet finiteness and grand unification, arXiv: hep-th/9606045 | MR
[99] Alvarez-Gaumé L., Ginsparg P. H., “The topological meaning of non-abelian anomalies”, Nuclear Phys. B, 243 (1984), 449–474 | DOI | MR
[100] Bardeen W. A., Zumino B., “Consistent and covariant anomalies in gauge and gravitational theories”, Nuclear Phys. B, 244 (1984), 421–453 | DOI | MR
[101] Zumino B., Wu Y. S., Zee A., “Chiral anomalies, higher dimensions, and differential geometry”, Nuclear Phys. B, 239 (1984), 477–507 | DOI | MR
[102] Leigh R. G., Strassler M. J., “Exactly marginal operators and duality in four dimensional $N=1$ supersymmetric gauge theory”, Nuclear Phys. B, 447 (1995), 95–133, arXiv: hep-th/9503121 | DOI | MR | Zbl
[103] Mondragón M., Zoupanos G., “Higgs mass prediction in finite unified theories”, Acta Phys. Polon. B, 34 (2003), 5459–5468
[104] Hamidi S., Patera J., Schwarz J. H., “Chiral two-loop-finite supersymmetric theories”, Phys. Lett. B, 141 (1984), 349–352 | DOI
[105] Jiang X. D., Zhou X. J., “Finite $N=1$ supersymmetric theories of classical groups”, Phys. Lett. B, 216 (1989), 160–166 | DOI | MR
[106] Jiang X. D., Zhou X. J., “Finite $N=1$ supersymmetric theories of $SU(N)$”, Phys. Lett. B, 197 (1987), 156–160 | DOI | MR
[107] Jones D. R. T., Raby S., “A two-loop finite supersymmetric $SU(5)$ theory: towards a theory of fermion masses”, Phys. Lett. B, 143 (1984), 137–141 | DOI
[108] León J., Pérez-Mercader J., Quirós M., Ramírez-Mittelbrunn J., “A sensible finite $SU(5)$ SUSY GUT?”, Phys. Lett. B, 156 (1985), 66–72 | DOI | MR
[109] Kazakov D. I., Kalmykov M. Y., Kondrashuk I. N., Gladyshev A. V., “Softly broken finite supersymmetric grand unified theory”, Nuclear Phys. B, 471 (1996), 389–408, arXiv: hep-ph/9511419 | DOI | MR
[110] Yoshioka K., “Finite SUSY GUT revisited”, Phys. Rev. D, 61 (2000), 055008, 14 pp., arXiv: hep-ph/9705449 | DOI
[111] Hamidi S., Schwarz J. H., “A realistic finite unified theory?”, Phys. Lett. B, 147 (1984), 301–306 | DOI
[112] Babu K. S., Enkhbat T., Gogoladze I., “Finite grand unified theories and the quark mixing matrix”, Phys. Lett. B, 555 (2003), 238–247, arXiv: hep-ph/0204246 | DOI | MR
[113] Heinemeyer S., Mondragón M., Zoupanos G., “Confronting finite unified theories with low-energy phenomenology”, J. High Energy Phys., 2008:7 (2008), 135, 8 pp., arXiv: 0712.3630 | DOI | MR
[114] Carena M. S., Garcia D., Nierste U., Wagner C. E. M., “Effective Lagrangian for the $\bar t b H^+$ interaction in the MSSM and charged Higgs phenomenology”, Nuclear Phys. B, 577 (2000), 88–120, arXiv: hep-ph/9912516 | DOI
[115] Amsler C. et al., “Review of particle physics”, Phys. Lett. B, 667 (2008), 1–6 | DOI
[116] Kobayashi T., Kubo J., Mondragón M., Zoupanos G., “Finite unification”, Surveys High Energ. Phys., 16 (2001), 87–129 | DOI
[117] Barate R. et al., “A measurement of the inclusive $b\to s\gamma$ branching ratio”, Phys. Lett. B, 429 (1998), 169–187 | DOI
[118] Chen S. et al., “Branching fraction and photon energy spectrum for $b\to s\gamma$”, Phys. Rev. Lett., 87 (2001), 251807, 5 pp., arXiv: hep-ex/0108032 | DOI
[119] Koppenburg P. et al., “An inclusive measurement of the photon energy spectrum in $b\to s\gamma$ decays”, Phys. Rev. Lett., 93 (2004), 061803, 6 pp., arXiv: hep-ex/0403004 | DOI
[120] Heavy Flavor Analysis Group see http://www.slac.stanford.edu/xorg/hfag/
[121] Heinemeyer S., Hollik W., Weiglein G., “FeynHiggs: a program for the calculation of the masses of the neutral $\mathcal{CP}$-even Higgs bosons in the MSSM”, Comput. Phys. Comm., 124 (2000), 76–89, arXiv: hep-ph/9812320 | DOI | Zbl
[122] Heinemeyer S., Hollik W., Weiglein G., “The masses of the neutral $\mathcal{CP}$-even Higgs bosons in the MSSM: accurate analysis at the two-loop level”, Eur. Phys. J. C, 9 (1999), 343–366, arXiv: hep-ph/9812472 | DOI
[123] Degrassi G., Heinemeyer S., Hollik W., Slavich P., Weiglein G., “Towards high-precision predictions for the MSSM Higgs sector”, Eur. Phys. J. C, 28 (2003), 133–143, arXiv: hep-ph/0212020 | DOI
[124] Frank M. et al., “The Higgs boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach”, J. High Energy Phys., 2007:2 (2007), 047, 56 pp., arXiv: hep-ph/0611326 | DOI
[125] Davier M., Hoecker A., Malaescu B., Yuan C. Z., Zhang Z., “Reevaluation of the hadronic contribution to the muon magnetic anomaly using new $e^+e^-\to\pi^+\pi^-$ cross section data from BABAR”, Eur. Phys. J. C, 66 (2010), 1–9, arXiv: 0908.4300 | DOI
[126] Goldberg H., “Constraint on the photino mass from cosmology”, Phys. Rev. Lett., 50 (1983), 1419–1422 | DOI
[127] Ellis J. R., Hagelin J. S., Nanopoulos D. V., Olive K. A., Srednicki M., “Supersymmetric relics from the big bang”, Nuclear Phys. B, 238 (1984), 453–477 | DOI
[128] Valle J. W. F., Neutrino mass: theory, data and interpretation, arXiv: hep-ph/9907222
[129] Dreiner H. K., “An introduction to explicit $R$-parity violation”, Pramana, 51 (1998), 123–133, arXiv: hep-ph/9707435 | DOI
[130] Bhattacharyya G., A brief review of $R$-parity-violating couplings, arXiv: hep-ph/9709395
[131] Allanach B. C., Dedes A., Dreiner H. K., “Bounds on $R$-parity violating couplings at the weak scale and at the GUT scale”, Phys. Rev. D, 60 (1999), 075014, 10 pp., arXiv: hep-ph/9906209 | DOI
[132] Romão J. C., Valle J. W. F., “Neutrino masses in supersymmetry with spontaneously broken $R$-parity”, Nuclear Phys. B, 381 (1992), 87–108 | DOI
[133] Lyth D. H., Stewart E. D., “Thermal inflation and the moduli problem”, Phys. Rev. D, 53 (1996), 1784–1798, arXiv: hep-ph/9510204 | DOI
[134] Gelmini G. B., Gondolo P., “Neutralino with the right cold dark matter abundance in (almost) any supersymmetric model”, Phys. Rev. D, 74 (2006), 023510, 5 pp., arXiv: hep-ph/0602230 | DOI
[135] Belanger G., Boudjema F., Pukhov A., Semenov A., “micrOMEGAs: a program for calculating the relic density in the MSSM”, Comput. Phys. Comm., 149 (2002), 103–120, arXiv: hep-ph/0112278 | DOI
[136] Belanger G., Boudjema F., Pukhov A., Semenov A., “MicrOMEGAs: Version 1.3”, Comput. Phys. Comm., 174 (2006), 577–604, arXiv: hep-ph/0405253 | DOI
[137] Ma E., Mondragón M., Zoupanos G., “Finite $SU(N)^k$ unification”, J. High Energy Phys., 2004:12 (2004), 026, 17 pp., arXiv: hep-ph/0407236 | DOI | MR
[138] Glashow S. L., “Trinification of all elementary particle forces”, Proceedings of Fifth Workshop on Grand Unification, eds. K. Kang, H. Fried and P. Frampton, World Scientific, Singapore, 1984, 88–94
[139] Lazarides G., Panagiotakopoulos C., Shafi Q., “Supersymmetric unification without proton decay”, Phys. Lett. B, 315 (1993), 325–330, arXiv: hep-ph/9306332 | DOI
[140] Lazarides G., Panagiotakopoulos C., “MSSM from SUSY trinification”, Phys. Lett. B, 336 (1994), 190–193, arXiv: hep-ph/9403317 | DOI | MR
[141] Ma E., “Particle dichotomy and left-right decomposition of $E_6$ superstring models”, Phys. Rev. D, 36 (1987), 274–276 | DOI
[142] Heinemeyer S., Ma E., Mondragón M., Zoupanos G., Finite $SU(3)^3$ unification, in preparation
[143] Dirac P. A. M., Lectures on quantum field theory, Academic Press Inc., 1967
[144] Dyson F. J., “Divergence of perturbation theory in quantum electrodynamics”, Phys. Rev., 85 (1952), 631–632 | DOI | MR | Zbl
[145] Weinberg S., Living with infinities (and references therein), arXiv: 903.0568