On the Origin of the Harmonic Term in Noncommutative Quantum Field Theory
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The harmonic term in the scalar field theory on the Moyal space removes the UV-IR mixing, so that the theory is renormalizable to all orders. In this paper, we review the three principal interpretations of this harmonic term: the Langmann–Szabo duality, the superalgebraic approach and the noncommutative scalar curvature interpretation. Then, we show some deep relationship between these interpretations.
Keywords: noncommutative QFT; gauge theory; renormalization; Heisenberg algebra.
@article{SIGMA_2010_6_a47,
     author = {Axel de Goursac},
     title = {On the {Origin} of the {Harmonic} {Term} in {Noncommutative} {Quantum} {Field} {Theory}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a47/}
}
TY  - JOUR
AU  - Axel de Goursac
TI  - On the Origin of the Harmonic Term in Noncommutative Quantum Field Theory
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a47/
LA  - en
ID  - SIGMA_2010_6_a47
ER  - 
%0 Journal Article
%A Axel de Goursac
%T On the Origin of the Harmonic Term in Noncommutative Quantum Field Theory
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a47/
%G en
%F SIGMA_2010_6_a47
Axel de Goursac. On the Origin of the Harmonic Term in Noncommutative Quantum Field Theory. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a47/

[1] Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994 | MR | Zbl

[2] Landi G., An introduction to noncommutative spaces and their geometries, Lecture Notes in Physics, New Series m: Monographs, 51, Springer-Verlag, Berlin, 1997 | MR

[3] Moyal J. E., “Quantum mechanics as a statistical theory”, Proc. Cambridge Philos. Soc., 45 (1949), 99–124 | DOI | MR | Zbl

[4] Doplicher S., Fredenhagen K., Roberts J. E., “The quantum structure of space-time at the Planck scale and quantum fields”, Comm. Math. Phys., 172 (1995), 187–220, arXiv: hep-th/0303037 | DOI | MR | Zbl

[5] Minwalla S., Van Raamsdonk M., Seiberg N., “Noncommutative perturbative dynamics”, J. High Energy Phys., 2000:2 (2000), 020, 31 pp., arXiv: hep-th/9912072 | DOI | MR

[6] Gayral V., “Heat-kernel approach to UV/IR mixing on isospectral deformation manifolds”, Ann. Henri Poincaré, 6 (2005), 991–1023, arXiv: hep-th/0412233 | DOI | MR | Zbl

[7] Gayral V., Non compact isospectral deformations and quantum field theory, arXiv: hep-th/0507208

[8] Grosse H., Wulkenhaar R., “Renormalisation of $\phi^4$ theory on noncommutative $\mathbb R^4$ in the matrix base”, Comm. Math. Phys., 256 (2005), 305–374, arXiv: hep-th/0401128 | DOI | MR | Zbl

[9] Langmann E., Szabo R. J., “Duality in scalar field theory on noncommutative phase spaces”, Phys. Lett. B, 533 (2002), 168–177, arXiv: hep-th/0202039 | DOI | MR | Zbl

[10] Bieliavsky P., Gurau R., Rivasseau V., “Noncommutative field theory on rank one symmetric spaces”, J. Noncommut. Geom., 3 (2009), 99–123, arXiv: 0806.4255 | DOI | MR | Zbl

[11] de Goursac A., Masson T., Wallet J.-C., Noncommutative $\varepsilon$-graded connections, arXiv: 0811.3567 | Zbl

[12] Buric M., Wohlgenannt M., “Geometry of the Grosse–Wulkenhaar model”, J. High Energy Phys., 2010:3 (2010), 053, 17 pp., arXiv: 0902.3408 | DOI | MR

[13] Buric M., Grosse H., Madore J., Gauge fields on noncommutative geometries with curvature, arXiv: 1003.2284

[14] Gracia-Bondia J. M., Varilly J. C., “Algebras of distributions suitable for phase space quantum mechanics. I”, J. Math. Phys., 29 (1988), 869–879 | DOI | MR | Zbl

[15] Varilly J. C., Gracia-Bondia J. M., “Algebras of distributions suitable for phase-space quantum mechanics. II. Topologies on the Moyal algebra”, J. Math. Phys., 29 (1988), 880–887 | DOI | MR | Zbl

[16] Gayral V., Gracia-Bondia J. M., Iochum B., Schucker T., Varilly J. C., “Moyal planes are spectral triples”, Comm. Math. Phys., 246 (2004), 569–623, arXiv: hep-th/0307241 | DOI | MR | Zbl

[17] Cagnache E., D'Andrea F., Martinetti P., Wallet J.-C., The spectral distance on the Moyal plane, arXiv: 0912.0906 | Zbl

[18] Filk T., “Divergencies in a field theory on quantum space”, Phys. Lett. B, 376 (1996), 53–58 | DOI | MR

[19] Magnen J., Rivasseau V., Tanasa A., “Commutative limit of a renormalizable noncommutative model”, Europhys. Lett., 86 (2009), 11001, 6 pp., arXiv: 0807.4093 | DOI

[20] Panero M., “Quantum field theory in a non-commutative space: theoretical predictions and numerical results on the fuzzy sphere”, SIGMA, 2 (2006), 081, 14 pp., arXiv: hep-th/0609205 | DOI | MR | Zbl

[21] Panero M., “Numerical simulations of a non-commutative theory: the scalar model on the fuzzy sphere”, J. High Energy Phys., 2007:5 (2007), 082, 20 pp., arXiv: hep-th/0608202 | DOI | MR

[22] Gurau R., Rivasseau V., Vignes-Tourneret F., “Propagators for noncommutative field theories”, Ann. Henri Poincaré, 7 (2006), 1601–1628, arXiv: hep-th/0512071 | DOI | MR | Zbl

[23] Vignes-Tourneret F., Renormalisation of non commutative field theories, PhD Thesis, arXiv: math-ph/0612014 | MR

[24] Rivasseau V., Vignes-Tourneret F., Wulkenhaar R., “Renormalization of noncommutative $\phi^4$-theory by multi-scale analysis”, Comm. Math. Phys., 262 (2006), 565–594, arXiv: hep-th/0501036 | DOI | MR | Zbl

[25] Gurau R., Magnen J., Rivasseau V., Vignes-Tourneret F., “Renormalization of non-commutative $\Phi^4_4$ field theory in $x$ space”, Comm. Math. Phys., 267 (2006), 515–542, arXiv: hep-th/0512271 | DOI | MR | Zbl

[26] Gurau R., Tanasa A., “Dimensional regularization and renormalization of non-commutative QFT”, Ann. Henri Poincaré, 9 (2008), 655–683, arXiv: 0706.1147 | DOI | MR | Zbl

[27] Grosse H., Wulkenhaar R., “Renormalisation of $\phi^4$-theory on noncommutative $\mathbb R^2$ in the matrix base”, J. High Energy Phys., 2003:12 (2003), 019, 26 pp., arXiv: hep-th/0307017 | DOI | MR

[28] Gurau R., Rivasseau V., “Parametric representation of noncommutative field theory”, Comm. Math. Phys., 272 (2007), 811–835, arXiv: math-ph/0606030 | DOI | MR | Zbl

[29] Rivasseau V., Tanasa A., “Parametric representation of “critical” noncommutative QFT models”, Comm. Math. Phys., 279 (2008), 355–379, arXiv: math-ph/0701034 | DOI | MR | Zbl

[30] Tanasa A., Vignes-Tourneret F., “Hopf algebra of non-commutative field theory”, J. Noncommut. Geom., 2 (2008), 125–139, arXiv: 0707.4143 | DOI | MR | Zbl

[31] Tanasa A., Kreimer D., Combinatorial Dyson–Schwinger equations in noncommutative field theory, arXiv: 0907.2182

[32] Disertori M., Rivasseau V., “Two- and three-loops beta function of noncommutative $\Phi_4^4$ theory”, Eur. Phys. J. C, 50 (2007), 661–671, arXiv: hep-th/0610224 | DOI

[33] Disertori M., Gurau R., Magnen J., Rivasseau V., “Vanishing of beta function of non-commutative $\phi_4^4$ theory to all orders”, Phys. Lett. B, 649 (2007), 95–102, arXiv: hep-th/0612251 | DOI | MR

[34] Grosse H., Wulkenhaar R., “The $\beta$-function in duality-covariant noncommutative $\phi^4$-theory”, Eur. Phys. J. C, 35 (2004), 277–282, arXiv: hep-th/0402093 | DOI | MR

[35] de Goursac A., Tanasa A., Wallet J.-C., “Vacuum configurations for renormalizable non-commutative scalar models”, Eur. Phys. J. C, 53 (2008), 459–466, arXiv: 0709.3950 | DOI | MR

[36] de Goursac A., Noncommutative geometry, gauge theory and renormalization, PhD Thesis, arXiv: 0910.5158 | Zbl

[37] de Goursac A., Wallet J.-C., Symmetries of noncommutative scalar field theory, arXiv: 0911.2645 | Zbl

[38] Langmann E., Szabo R. J., Zarembo K., “Exact solution of quantum field theory on noncommutative phase spaces”, J. High Energy Phys., 2004:1 (2004), 017, 69 pp., arXiv: hep-th/0308043 | DOI | MR

[39] Vignes-Tourneret F., “Renormalization of the orientable non-commutative Gross–Neveu model”, Ann. Henri Poincaré, 8 (2007), 427–474, arXiv: math-ph/0606069 | DOI | MR | Zbl

[40] Gurau R., Magnen J., Rivasseau V., Tanasa A., “A translation-invariant renormalizable non-commutative scalar model”, Comm. Math. Phys., 287 (2009), 275–290, arXiv: 0802.0791 | DOI | MR | Zbl

[41] Geloun J. B., Tanasa A., “One-loop $\beta$ functions of a translation-invariant renormalizable noncommutative scalar model”, Lett. Math. Phys., 86 (2008), 19–32, arXiv: 0806.3886 | DOI | MR | Zbl

[42] Tanasa A., “Translation-invariant noncommutative renormalization”, SIGMA, 6 (2010), 047, 13 pp., arXiv: 1003.4877 | DOI

[43] Blaschke D. N., Gieres F., Kronberger E., Schweda M., Wohlgenannt M., “Translation-invariant models for non-commutative gauge fields”, J. Phys. A: Math. Theor., 41 (2008), 252002, 7 pp., arXiv: 0804.1914 | DOI | MR | Zbl

[44] Blaschke D. N., Rofner A., Schweda M., Sedmik R. I. P., “One-loop calculations for a translation invariant non-commutative gauge model”, Eur. Phys. J. C, 62 (2009), 433–443, arXiv: 0901.1681 | DOI | MR | Zbl

[45] de Goursac A., Wallet J.-C., Wulkenhaar R., “Noncommutative induced gauge theory”, Eur. Phys. J. C, 51 (2007), 977–987, arXiv: hep-th/0703075 | DOI | MR

[46] Wallet J.-C., “Noncommutative induced gauge theories on Moyal spaces”, J. Phys. Conf. Ser., 103 (2008), 012007, 20 pp., arXiv: 0708.2471 | DOI

[47] Matusis A., Susskind L., Toumbas N., “The IR/UV connection in the non-commutative gauge theories”, J. High Energy Phys., 2000:12 (2000), 002, 18 pp., arXiv: hep-th/0002075 | DOI | MR

[48] Grosse H., Wohlgenannt M., “Induced gauge theory on a noncommutative space”, Eur. Phys. J. C, 52 (2007), 435–450, arXiv: hep-th/0703169 | DOI | MR

[49] Blaschke D. N., Grosse H., Schweda M., “Non-commutative $U(1)$ gauge theory on $\mathbb R^4_\Theta$ with oscillator term and BRST symmetry”, Europhys. Lett., 79 (2007), 61002, 3 pp., arXiv: 0705.4205 | DOI | MR

[50] Blaschke D. N., Grosse H., Kronberger E., Schweda M., Wohlgenannt M., Loop calculations for the non-commutative $U(1)$ gauge field model with oscillator term, arXiv: 0912.3642

[51] de Goursac A., “On the effective action of noncommutative Yang–Mills theory”, J. Phys. Conf. Ser., 103 (2008), 012010, 16 pp., arXiv: 0710.1162 | DOI

[52] de Goursac A., Wallet J.-C., Wulkenhaar R., “On the vacuum states for noncommutative gauge theory”, Eur. Phys. J. C, 56 (2008), 293–304, arXiv: 0803.3035 | DOI | MR

[53] Ilderton A., Lundin J., Marklund M., “Strong field, noncommutative QED”, SIGMA, 6 (2010), 041, 27 pp., arXiv: 1003.4184 | DOI

[54] Fischer A., Szabo R. J., UV/IR duality in noncommutative quantum field theory, arXiv: 1001.3776

[55] Folland G. B., Harmonic analysis in phase space, Annals of Mathematics Studies, 122, Princeton University Press, Princeton, NJ, 1989 | MR | Zbl

[56] Dubois-Violette M., “Dérivations et calcul différentiel non commutatif”, C. R. Acad. Sci. Paris Sér. I Math., 307 (1988), 403–408 | MR | Zbl

[57] Masson T., “Examples of derivation-based differential calculi related to noncommutative gauge theories”, Int. J. Geom. Methods Mod. Phys., 5 (2008), 1315–1336, arXiv: 0810.4815 | DOI | MR | Zbl

[58] Wulkenhaar R., Non-compact spectral triples with finite volume, arXiv: 0907.1351

[59] Cagnache E., Masson T., Wallet J.-C., “Noncommutative Yang–Mills–Higgs actions from derivation-based differential calculus”, J. Noncommut. Geom. (to appear) , arXiv: 0804.3061 | Zbl

[60] Madore J., Mourad J., “Quantum space-time and classical gravity”, J. Math. Phys., 39 (1998), 423–442, arXiv: gr-qc/9607060 | DOI | MR | Zbl

[61] Dubois-Violette M., Madore J., Masson T., Mourad J., “On curvature in noncommutative geometry”, J. Math. Phys., 37 (1996), 4089–4102, arXiv: q-alg/9512004 | DOI | MR | Zbl

[62] Hollands S., Wald R. M., “On the renormalization group in curved spacetime”, Comm. Math. Phys., 237 (2003), 123–160, arXiv: gr-qc/0209029 | DOI | MR | Zbl