@article{SIGMA_2010_6_a46,
author = {Adrian Tanasa},
title = {Translation-Invariant {Noncommutative} {Renormalization}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a46/}
}
Adrian Tanasa. Translation-Invariant Noncommutative Renormalization. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a46/
[1] Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994 | MR | Zbl
[2] Grosse H., Wulkenhaar R., “Renormalization of $\phi^4$-theory on noncommutative $\mathbb R^4$ in the matrix base”, Comm. Math. Phys., 256 (2005), 305–374, arXiv: hep-th/0401128 | DOI | MR | Zbl
[3] Grosse H., Wulkenhaar R., “The $\beta$-function in duality-covariant noncommutative $\phi^4$-theory”, Eur. Phys. J. C, 35 (2004), 277–282, arXiv: ; Disertori M., Gurau R., Magnen J., Rivasseau V., “Vanishing of beta function of non-commutative $\Phi_4^4$ theory to all orders”, Phys. Lett. B, 649 (2007), 95–102, arXiv: hep-th/0402093hep-th/0612251 | DOI | MR | DOI | MR
[4] Gurau R., Magnen J., Rivasseau V., Tanasa A., “A translation-invariant renormalizable non-commutative scalar model”, Comm. Math. Phys., 287 (2008), 275–290, arXiv: 0802.0791 | DOI | MR
[5] Szabo R. J., “Quantum field theory on noncommutative spaces”, Phys. Rep., 378 (2003), 207–299, arXiv: hep-th/0109162 | DOI | MR | Zbl
[6] Witten E., “Noncommutative geometry and string field theory”, Nuclear Phys. B, 268 (1986), 253–294 | DOI | MR
[7] Seiberg N., Witten E., “String theory and noncommutative geometry”, J. High Energy Phys., 1999:9 (1999), 032, 93 pp., arXiv: hep-th/9908142 | DOI | MR
[8] Connes A., Douglas M. R., Schwarz A., “Noncommutative geometry and matrix theory: compactification on tori”, J. High Energy Phys., 1998:2 (1998), 003, 35 pp., arXiv: hep-th/9711162 | DOI | MR
[9] Douglas M. R., Hull C., “D-branes and the noncommutative torus”, J. High Energy Phys., 1998:2 (1998), 008, 5 pp., arXiv: hep-th/9711165 | DOI | MR
[10] Freidel L., Livine E. R., “3D quantum gravity and effective noncommutative quantum field theory”, Phys. Rev. Lett., 96 (2006), 221301, 4 pp., arXiv: hep-th/0512113 | DOI | MR
[11] Joung E., Mourad J., Noui K., “Three dimensional quantum geometry and deformed Poincaré symmetry”, J. Math. Phys., 50 (2009), 052503, 29 pp., arXiv: 0806.4121 | DOI | MR
[12] Susskind L., The quantum hall fluid and non-commutative Chern Simons theory, arXiv: ; Polychronakos A. P., “Quantum Hall states on the cylinder as unitary matrix Chern–Simons theory”, J. High Energy Phys., 2001:6 (2001), 070, 28 pp., arXiv: ; Hellerman S., Van Raamsdonk M., “Quantum Hall physics equals noncommutative field theory?”, J. High Energy Phys., 2001:10 (2001), 039, 18 pp., arXiv: hep-th/0101029hep-th/0106011hep-th/0103179 | DOI | MR | DOI | MR
[13] Heslop P., Sibold K., “Quantized equations of motion in non-commutative theories”, Eur. Phys. J. C, 41 (2005), 545–556, arXiv: ; Liao Y., Sibold K., “Time-ordered perturbation theory on noncommutative space-time. II. Unitarity”, Eur. Phys. J. C, 25 (2002), 479–486, arXiv: ; Liao Y., Sibold K., “Time-ordered perturbation theory on noncommutative space-time. Basic rules”, Eur. Phys. J. C, 25 (2002), 469–477, arXiv: ; Denk S., Schweda M.,, “Time ordered perturbation theory for nonlocal interactions: applications to NCQFT”, J. High Energy Phys., 2003:3 (2003), 032, 22 pp., arXiv: hep-th/0411161hep-th/0206011hep-th/0205269hep-th/0306101 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR
[14] de Goursac A., Masson T., Wallet J.-C., Noncommutative $\varepsilon$-graded connections and application to Moyal space, arXiv: 0811.3567 | Zbl
[15] Magnen J., Rivasseau V., Tanasa A., “Commutative limit of a renormalizable noncommutative model”, Europhys. Lett., 86 (2009), 11001, 6 pp., arXiv: 0807.4093 | DOI
[16] Minwalla S., Van Raamsdonk M., Seiberg N., “Noncommutative perturbative dynamics”, J. High Energy Phys., 2000:2 (2000), 020, 31 pp., arXiv: hep-th/9912072 | DOI | MR
[17] Galluccio S., Lizzi F., Vitale P., “Translation invariance, commutation relations and ultraviolet/infrared mixing”, J. High Energy Phys., 2009:9 (2009), 054, 18 pp., arXiv: ; Galluccio S., Lizzi F., Vitale P., “Twisted noncommutative field theory with the Wick–Voros and Moyal products”, Phys. Rev. D, 78 (2008), 085007, 14 pp., arXiv: 0907.36400810.2095 | DOI | Zbl | DOI | MR
[18] Steinacker H., “Emergent geometry and gravity from matrix models: an introduction”, Classical Quantum Gravity, 27 (2010), 133001, 46 pp., arXiv: ; Grosse H., Steinacker H., Wohlgenannt M., “Emergent gravity, matrix models and UV/IR mixing”, J. High Energy Phys., 2008:4 (2008), 023, 30 pp., arXiv: ; Steinacker H., “Emergent gravity from noncommutative gauge theory”, J. High Energy Phys., 2007:12 (2007), 049, 36 pp., arXiv: 1003.4134802.09730708.2426 | DOI | DOI | MR | DOI | MR
[19] Langmann E., Szabo R. J., “Duality in scalar field theory on noncommutative phase spaces”, Phys. Lett. B, 533 (2002), 168–177, arXiv: hep-th/0202039 | DOI | MR | Zbl
[20] Fischer A., Szabo R. J., UV/IR duality in noncommutative quantum field theory, arXiv: ; Fischer A., Szabo R. J., “Duality covariant quantum field theory on noncommutative Minkowski space”, J. High Energy Phys., 2009:2 (2009), 031, 36 pp., arXiv: 1001.37760810.1195 | DOI | MR
[21] de Goursac A., Wallet J.-C., Symmetries of noncommutative scalar field theory, arXiv: 0911.2645 | Zbl
[22] Langmann E., Szabo R. J., Zarembo K., “Exact solution of noncommutative field theory in background magnetic fields”, Phys. Lett. B, 569 (2003), 95–101, arXiv: ; Langmann E., Szabo R. J., Zarembo K., “Exact solution of quantum field theory on noncommutative phase spaces”, J. High Energy Phys., 2004:1 (2004), 017, 69 pp., arXiv: hep-th/0303082hep-th/0308043 | DOI | MR | Zbl | DOI | MR
[23] Gurau R., Tanasa A., “Dimensional regularization and renormalization of non-commutative quantum field theory”, Ann. Henri Poincaré, 9 (2008), 655–683, arXiv: 0706.1147 | DOI | MR | Zbl
[24] Tanasa A., Vignes-Tourneret F., “Hopf algebra of non-commutative field theory”, J. Noncommut. Geom., 2 (2008), 125–139, arXiv: 0707.4143 | DOI | MR | Zbl
[25] Rivasseau V., Tanasa A., “Parametric representation of “covariant” noncommutative QFT models”, Comm. Math. Phys., 279 (2007), 355–379, arXiv: math-ph/0701034 | DOI | MR
[26] Tanasa A., “Overview of the parametric representation of renormalizable non-commutative field theory”, J. Phys. Conf. Ser., 103 (2008), 012012, 10 pp., arXiv: 0709.2270 | DOI
[27] Tanasa A., “Feynman amplitudes in renormalizable non-commutative quantum field theory”, Modern Encyclopedia of Mathematical Physics, eds. I. Aref'eva and D. Sternheimer, Springer, Berlin, arXiv: 0711.3355
[28] Gurau R., Malbouisson A., Rivasseau V., Tanasa A., “Non-commutative complete Mellin representation for Feynman amplitudes”, Lett. Math. Phys., 81 (2007), 161–175, arXiv: 0705.3437 | DOI | MR | Zbl
[29] Aluffi P., Marcolli M., Feynman motives of banana graphs, arXiv: 0807.1690 | MR
[30] de Goursac A., Tanasa A., Wallet J.-C., “Vacuum configurations for renormalizable non-commutative scalar models”, Eur. Phys. J. C, 53 (2007), 459–466, arXiv: 0709.3950 | DOI | MR
[31] Ben Geloun J., Tanasa A., “One-loop $\beta$ functions of a translation-invariant renormalizable noncommutative scalar model”, Lett. Math. Phys., 86 (2008), 19–32, arXiv: 0806.3886 | DOI | MR | Zbl
[32] Tanasa A., Kreimer D., Combinatorial Dyson–Schwinger equation in noncommutative field theory, arXiv: 0907.2182
[33] Gurau R., Rosten O. J., “Wilsonian renormalization of noncommutative scalar field theory”, J. High Energy Phys., 2009:7 (2009), 064, 45 pp., arXiv: 0902.4888 | DOI | MR
[34] Tanasa A., “Parametric representation of a translation-invariant renormalizable noncommutative model”, J. Phys. A: Math. Theor., 42 (2009), 365208, 18 pp., arXiv: 0807.2779 | DOI | MR | Zbl
[35] Dudal D., Sorella S., Vandersickel N., Verschelde H., “New features of the gluon and ghost propagator in the infrared region from the Gribov–Zwanziger approach”, Phys. Rev. D, 77 (2008), 071501, 5 pp., arXiv: 0711.4496 | DOI | MR
[36] Palma G., Patil S., “UV/IR mode mixing and the CMB”, Phys. Rev. D, 80 (2009), 083010, 11 pp., arXiv: ; Patil S., On Semi-classical degravitation and the cosmological constant problems, arXiv: 0906.47271003.3010 | DOI | MR
[37] Helling R., You J., “Macroscopic screening of Coulomb potentials from UV/IR-mixing”, J. High Energy Phys., 2008:6 (2008), 067, 10 pp., arXiv: 0707.1885 | DOI | Zbl
[38] Krajewski T., Rivasseau V., Tanasa A., Wang Z., “Topological graph polynomials and quantum field theory. I. Heat kernel theories”, J. Noncommut. Geom., 4 (2010), 29–82, arXiv: 0811.0186 | DOI | MR | Zbl
[39] Tanasa A., “Algebraic structures in quantum gravity”, Classical Quantum Gravity, 27 (2010), 095008, 17 pp., arXiv: 0909.5631 | DOI | Zbl
[40] Tanasa A., Vitale P., “Curing the UV/IR mixing for field theories with translation-invariant star products”, Phys. Rev. D, 81 (2010), 065008, 12 pp., arXiv: 0912.0200 | DOI
[41] Blaschke D. N., Rofner A., Sedmik R., “One-loop calculations and detailed analysis of the localized non-commutative $p^{-2}$ $U(1)$ gauge model”, SIGMA, 6 (2010), 037, 20 pp., arXiv: ; Blaschke D. N., Kronberger E., Rofner A., Schweda M., Sedmik R., Wohlgenannt M., “On the problem of renormalizability in non-commutative gauge field models – a critical review”, Fortschr. Phys., 58 (2010), 364–372, arXiv: ; Blaschke D. N., Rofner A., Schweda M., Sedmik R., “Improved localization of a renormalizable non-commutative translation invariant $U(1)$ gauge model”, Europhys. Lett., 86 (2009), 51002, 10 pp., arXiv: ; Blaschke D. N., Rofner A., Schweda M., Sedmik R., “One-loop calculations for a translation invariant non-commutative gauge model”, Eur. Phys. J. C, 62 (2009), 433–443, arXiv: 0908.17430908.04670903.48110901.1681 | DOI | Zbl | DOI | Zbl | DOI | MR | DOI | Zbl
[42] de Goursac A., Noncommutative geometry, gauge theory and renormalization, PhD Thesis, arXiv: ; de Goursac A., Wallet J.-C., Wulkenhaar R., “On the vacuum states for non-commutative gauge theory”, Eur. Phys. J. C, 56 (2008), 293–304, arXiv: ; de Goursac A., “On the effective action of noncommutative Yang–Mills theory”, J. Phys. Conf. Ser., 103 (2008), 012010, 19 pp., arXiv: ; de Goursac A., Wallet J.-C., Wulkenhaar R., “Noncommutative induced gauge theory”, Eur. Phys. J. C, 51 (2007), 977–987, arXiv: 0910.51580803.30350710.1162hep-th/0703075 | Zbl | DOI | MR | DOI | DOI | MR
[43] Freidel L., “Group field theory: an overview”, Internat. J. Theoret. Phys., 44 (2005), 1769–1783, arXiv: ; Oriti D., “Quantum gravity as a group field theory: a sketch”, J. Phys. Conf. Ser., 33 (2006), 271–278, arXiv: ; Oriti D., The group field theory approach to quantum gravity, arXiv: ; Oriti D., The group field theory approach to quantum gravity: some recent results, arXiv: hep-th/0505016gr-qc/0512048gr-qc/06070320912.2441 | DOI | MR | Zbl | DOI | MR
[44] Magnen J., Noui K., Rivasseau V., Smerlak M., “Scaling behaviour of three-dimensional group field theory”, Classical Quantum Gravity, 26 (2009), 185012, 20 pp., arXiv: ; Freidel L., Gurau R., Oriti D., “Group field theory renormalization – the 3d case: power counting of divergences”, Phys. Rev. D, 80 (2009), 044007, 20 pp., arXiv: ; Ben Geloun J., Krajewski T., Magnen J., Rivasseau V., “Linearized group field theory and power counting theorems”, Classical Quantum Gravity (to appear) , arXiv: ; Ben Geloun J., Magnen J., Rivasseau V., “Bosonic colored group field theory”, Classical Quantum Gravity (to appear) , arXiv: 0906.54770905.37721002.35920911.1719 | DOI | MR | Zbl | DOI | MR
[45] Engle J., Livine E., Pereira R., Rovelli C., “LQG vertex with finite Immirzi parameter”, Nuclear Phys. B, 799 (2008), 136–149, arXiv: 0711.0146 | DOI | MR | Zbl
[46] Freidel L., Krasnov K., “A new spin Foam model for 4D gravity”, Classical Quantum Gravity, 25 (2008), 125018, 36 pp., arXiv: 0708.1595 | DOI | MR