@article{SIGMA_2010_6_a45,
author = {B. J. Durhuus and V. Gayral},
title = {The {Scattering} {Problem} for {a~Noncommutative} {Nonlinear} {Schr\"odinger} {Equation}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a45/}
}
B. J. Durhuus; V. Gayral. The Scattering Problem for a Noncommutative Nonlinear Schrödinger Equation. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a45/
[1] Cazenave T., Lions P. L., “Orbital stability of standing waves for some nonlinear Schrödinger equations”, Comm. Math. Phys., 85 (1982), 549–561 | DOI | MR | Zbl
[2] Cazenave T., Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, 10, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl
[3] Durhuus B., Jonsson T., “Noncommutative waves have infinite propagation speed”, J. High Energy Phys., 2004:10 (2004), 050, 13 pp., arXiv: hep-th/0408190 | DOI | MR
[4] Durhuus B., Jonsson T., Nest R., “The existence and stability of noncommutative scalar solitons”, Comm. Math. Phys., 233 (2003), 49–78, arXiv: hep-th/0107121 | DOI | MR | Zbl
[5] Erdélyi T., Magnus A. P., Nevai P., “Generalized Jacobi weights, Christoffel functions, and Jacobi polynomials”, SIAM J. Math. Anal., 25 (1994), 602–614 | DOI | MR | Zbl
[6] Gayral V., Gracia-Bondía J. M., Iochum B., Schücker T., Várilly J. C., “Moyal planes are spectral triples”, Comm. Math. Phys., 246 (2004), 569–623, arXiv: hep-th/0307241 | DOI | MR | Zbl
[7] Ginibre J., “An introduction to nonlinear Schrödinger equations”, Nonlinear Waves (Sappore 1995), GAKUTO Internat. Ser. Math. Sci. Appl., eds. R. Agemi, Y. Giga and T. Ozawa, Gakkōtosho, Tokyo, 1997, 85–133 | MR | Zbl
[8] Ginibre J., Velo G., “Time decay of finite energy solutions of the nonlinear Klein–Gordon and Schrödinger equations”, Ann. Inst. H. Poincaré Phys. Théor., 43 (1985), 399–442 | MR | Zbl
[9] Gopakumar R., Minwalla S., Strominger A., “Noncommutative solitons”, J. High Energy Phys., 2000:5 (2000), 020, 27 pp., arXiv: hep-th/0003160 | DOI | MR
[10] Grillakis M., Shatah J., Strauss W., “Stability theory of solitary waves in the presence of symmetry. I”, J. Funct. Anal., 74 (1987), 160–197 | DOI | MR | Zbl
[11] Harvey J., Kraus P., Larsen F., “Exact noncommutative solitons”, J. High Energy Phys., 2000:12 (2000), 024, 24 pp., arXiv: hep-th/0010060 | DOI | MR
[12] Krasikov I., “An upper bound on Jacobi polynomials”, J. Approx. Theory, 149 (2007), 116–130, arXiv: math.CA/0610111 | DOI | MR | Zbl
[13] Reed M., Abstract non-linear wave equations, Lecture Notes in Mathematics, 507, Springer-Verlag, Berlin, New York, 1976 | MR | Zbl
[14] Reed M., Simon B., Methods of modern mathematical physics, v. II, Academic Press, New York, London, 1975 | MR | Zbl
[15] Shatah J., Strauss W. A., “Instability of nonlinear bound states”, Comm. Math. Phys., 100 (1985), 173–190 | DOI | MR | Zbl
[16] Szegő G., Orthogonal polynomials, American Mathematical Society Colloquium Publications, 23, Amer. Math. Soc., Providence, RI, 1959 | MR | Zbl
[17] Strauss W. A., Nonlinear wave equations, CBMS Regional Conference Series in Mathematics, 73, Amer. Math. Soc., Providence, RI, 1989 | MR | Zbl
[18] Wulkenhaar R., Renormalisation of noncommutative $\varphi_4^4$-theory to all orders, Habilitation Thesis, University of Vienna, 2003, available at http://www.math.uni-muenster.de/u/raimar/