The Scattering Problem for a Noncommutative Nonlinear Schrödinger Equation
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate scattering properties of a Moyal deformed version of the nonlinear Schrödinger equation in an even number of space dimensions. With rather weak conditions on the degree of nonlinearity, the Cauchy problem for general initial data has a unique globally defined solution, and also has solitary wave solutions if the interaction potential is suitably chosen. We demonstrate how to set up a scattering framework for equations of this type, including appropriate decay estimates of the free time evolution and the construction of wave operators defined for small scattering data in the general case and for arbitrary scattering data in the rotationally symmetric case.
Keywords: noncommutative geometry; nonlinear wave equations; scattering theory; Jacobi polynomials.
@article{SIGMA_2010_6_a45,
     author = {B. J. Durhuus and V. Gayral},
     title = {The {Scattering} {Problem} for {a~Noncommutative} {Nonlinear} {Schr\"odinger} {Equation}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a45/}
}
TY  - JOUR
AU  - B. J. Durhuus
AU  - V. Gayral
TI  - The Scattering Problem for a Noncommutative Nonlinear Schrödinger Equation
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a45/
LA  - en
ID  - SIGMA_2010_6_a45
ER  - 
%0 Journal Article
%A B. J. Durhuus
%A V. Gayral
%T The Scattering Problem for a Noncommutative Nonlinear Schrödinger Equation
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a45/
%G en
%F SIGMA_2010_6_a45
B. J. Durhuus; V. Gayral. The Scattering Problem for a Noncommutative Nonlinear Schrödinger Equation. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a45/

[1] Cazenave T., Lions P. L., “Orbital stability of standing waves for some nonlinear Schrödinger equations”, Comm. Math. Phys., 85 (1982), 549–561 | DOI | MR | Zbl

[2] Cazenave T., Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, 10, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl

[3] Durhuus B., Jonsson T., “Noncommutative waves have infinite propagation speed”, J. High Energy Phys., 2004:10 (2004), 050, 13 pp., arXiv: hep-th/0408190 | DOI | MR

[4] Durhuus B., Jonsson T., Nest R., “The existence and stability of noncommutative scalar solitons”, Comm. Math. Phys., 233 (2003), 49–78, arXiv: hep-th/0107121 | DOI | MR | Zbl

[5] Erdélyi T., Magnus A. P., Nevai P., “Generalized Jacobi weights, Christoffel functions, and Jacobi polynomials”, SIAM J. Math. Anal., 25 (1994), 602–614 | DOI | MR | Zbl

[6] Gayral V., Gracia-Bondía J. M., Iochum B., Schücker T., Várilly J. C., “Moyal planes are spectral triples”, Comm. Math. Phys., 246 (2004), 569–623, arXiv: hep-th/0307241 | DOI | MR | Zbl

[7] Ginibre J., “An introduction to nonlinear Schrödinger equations”, Nonlinear Waves (Sappore 1995), GAKUTO Internat. Ser. Math. Sci. Appl., eds. R. Agemi, Y. Giga and T. Ozawa, Gakkōtosho, Tokyo, 1997, 85–133 | MR | Zbl

[8] Ginibre J., Velo G., “Time decay of finite energy solutions of the nonlinear Klein–Gordon and Schrödinger equations”, Ann. Inst. H. Poincaré Phys. Théor., 43 (1985), 399–442 | MR | Zbl

[9] Gopakumar R., Minwalla S., Strominger A., “Noncommutative solitons”, J. High Energy Phys., 2000:5 (2000), 020, 27 pp., arXiv: hep-th/0003160 | DOI | MR

[10] Grillakis M., Shatah J., Strauss W., “Stability theory of solitary waves in the presence of symmetry. I”, J. Funct. Anal., 74 (1987), 160–197 | DOI | MR | Zbl

[11] Harvey J., Kraus P., Larsen F., “Exact noncommutative solitons”, J. High Energy Phys., 2000:12 (2000), 024, 24 pp., arXiv: hep-th/0010060 | DOI | MR

[12] Krasikov I., “An upper bound on Jacobi polynomials”, J. Approx. Theory, 149 (2007), 116–130, arXiv: math.CA/0610111 | DOI | MR | Zbl

[13] Reed M., Abstract non-linear wave equations, Lecture Notes in Mathematics, 507, Springer-Verlag, Berlin, New York, 1976 | MR | Zbl

[14] Reed M., Simon B., Methods of modern mathematical physics, v. II, Academic Press, New York, London, 1975 | MR | Zbl

[15] Shatah J., Strauss W. A., “Instability of nonlinear bound states”, Comm. Math. Phys., 100 (1985), 173–190 | DOI | MR | Zbl

[16] Szegő G., Orthogonal polynomials, American Mathematical Society Colloquium Publications, 23, Amer. Math. Soc., Providence, RI, 1959 | MR | Zbl

[17] Strauss W. A., Nonlinear wave equations, CBMS Regional Conference Series in Mathematics, 73, Amer. Math. Soc., Providence, RI, 1989 | MR | Zbl

[18] Wulkenhaar R., Renormalisation of noncommutative $\varphi_4^4$-theory to all orders, Habilitation Thesis, University of Vienna, 2003, available at http://www.math.uni-muenster.de/u/raimar/