The Noncommutative Ward Metric
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We analyze the moduli-space metric in the static non-Abelian charge-two sector of the Moyal-deformed $\mathbb CP^1$ sigma model in $1+2$ dimensions. After carefully reviewing the commutative results of Ward and Ruback, the noncommutative Kähler potential is expanded in powers of dimensionless moduli. In two special cases we sum the perturbative series to analytic expressions. For any nonzero value of the noncommutativity parameter, the logarithmic singularity of the commutative metric is expelled from the origin of the moduli space and possibly altogether.
Keywords: noncommutative geometry; $\mathbb C P^1$ sigma model.
@article{SIGMA_2010_6_a44,
     author = {O. Lechtenfeld and M. Maceda},
     title = {The {Noncommutative} {Ward} {Metric}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a44/}
}
TY  - JOUR
AU  - O. Lechtenfeld
AU  - M. Maceda
TI  - The Noncommutative Ward Metric
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a44/
LA  - en
ID  - SIGMA_2010_6_a44
ER  - 
%0 Journal Article
%A O. Lechtenfeld
%A M. Maceda
%T The Noncommutative Ward Metric
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a44/
%G en
%F SIGMA_2010_6_a44
O. Lechtenfeld; M. Maceda. The Noncommutative Ward Metric. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a44/

[1] Zakrzewski W. J., Low-dimensional sigma models, Adam Hilger, Ltd., Bristol, 1989 | MR | Zbl

[2] Manton N. S., Sutcliffe P., Topological solitons, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2004 | MR | Zbl

[3] Manton N. S., “A remark on the scattering of BPS monopoles”, Phys. Lett. B, 110 (1982), 54–56 | DOI | MR

[4] Ward R. S., “Slowly-moving lumps in the $\mathbb CP^1$ model in $(2+1)$ dimensions”, Phys. Lett. B, 158 (1985), 424–428 | DOI | MR

[5] Ruback P. J., “Sigma model solitons and their moduli space metrics”, Comm. Math. Phys., 116 (1988), 645–658 | DOI | MR | Zbl

[6] Dunajski M., Manton N. S., “Reduced dynamics of Ward solitons”, Nonlinearity, 18 (2005), 1677–1689, arXiv: hep-th/0411068 | DOI | MR | Zbl

[7] Lee B.-H., Lee K., Yang H. S., “The $\mathbb CP(n)$ model on noncommutative plane”, Phys. Lett. B, 498 (2001), 277–284, arXiv: hep-th/0007140 | DOI | MR | Zbl

[8] Furuta K., Inami T., Nakajima H., Yamamoto M., “Low-energy dynamics of noncommutative $\mathbb CP^1$ solitons in $2+1$ dimensions”, Phys. Lett. B, 537 (2002), 165–172, arXiv: hep-th/0203125 | DOI | MR | Zbl

[9] Lechtenfeld O., Popov A. D., “Noncommutative multi-solitons in $2+1$ dimensions”, J. High Energy Phys., 2001:11 (2001), 040, 32 pp., arXiv: hep-th/0106213 | DOI | MR

[10] Chu C.-S., Lechtenfeld O., “Time-space noncommutative Abelian solitons”, Phys. Lett. B, 625 (2005), 145–155, arXiv: hep-th/0507062 | DOI | MR

[11] Klawunn M., Lechtenfeld O., Petersen S., “Moduli-space dynamics of noncommutative Abelian sigma-model solitons”, J. High Energy Phys., 2006:6 (2006), 028, 18 pp., arXiv: hep-th/0604219 | DOI | MR

[12] Furuuchi K., “Instantons on noncommutative $\mathbb R^4$ and projection operators”, Progr. Theoret. Phys., 103 (2000), 1043–1068, arXiv: ; Furuuchi K., “Equivalence of projections as gauge equivalence on noncommutative space”, Comm. Math. Phys., 217 (2001), 579–593, arXiv: hep-th/9912047hep-th/0005199 | DOI | MR | DOI | MR | Zbl

[13] Abramowitz M., Stegun I. A., Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publications, Inc., New York, 1992 | MR

[14] Li L.-W., Kang X.-K., Leong M.-S., Spheroidal wave functions in electromagnetic theory, John Wiley Sons, New York, 2002

[15] Gel'fand I. M., Yaglom A. M., “Integration in functional spaces and its applications in quantum physics”, J. Math. Phys., 1 (1960), 48–69 | DOI | MR

[16] Levit S., Smilansky U., “A theorem on infinite products of eigenvalues of Sturm–Liouville type operators”, Proc. Amer. Math. Soc., 65 (1977), 299–302 | DOI | MR | Zbl

[17] Kirsten K., Spectral functions in mathematics and physics, Chapman-Hall, London, 2001; Kirsten K., Loya P., “Computation of determinants using contour integrals”, Amer. J. Phys., 76 (2008), 60–64, arXiv: 0707.3755 | DOI

[18] Rubey M., Hebisch W., Extended rate, more GFUN, arXiv: math.CO/0702086