@article{SIGMA_2010_6_a44,
author = {O. Lechtenfeld and M. Maceda},
title = {The {Noncommutative} {Ward} {Metric}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a44/}
}
O. Lechtenfeld; M. Maceda. The Noncommutative Ward Metric. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a44/
[1] Zakrzewski W. J., Low-dimensional sigma models, Adam Hilger, Ltd., Bristol, 1989 | MR | Zbl
[2] Manton N. S., Sutcliffe P., Topological solitons, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2004 | MR | Zbl
[3] Manton N. S., “A remark on the scattering of BPS monopoles”, Phys. Lett. B, 110 (1982), 54–56 | DOI | MR
[4] Ward R. S., “Slowly-moving lumps in the $\mathbb CP^1$ model in $(2+1)$ dimensions”, Phys. Lett. B, 158 (1985), 424–428 | DOI | MR
[5] Ruback P. J., “Sigma model solitons and their moduli space metrics”, Comm. Math. Phys., 116 (1988), 645–658 | DOI | MR | Zbl
[6] Dunajski M., Manton N. S., “Reduced dynamics of Ward solitons”, Nonlinearity, 18 (2005), 1677–1689, arXiv: hep-th/0411068 | DOI | MR | Zbl
[7] Lee B.-H., Lee K., Yang H. S., “The $\mathbb CP(n)$ model on noncommutative plane”, Phys. Lett. B, 498 (2001), 277–284, arXiv: hep-th/0007140 | DOI | MR | Zbl
[8] Furuta K., Inami T., Nakajima H., Yamamoto M., “Low-energy dynamics of noncommutative $\mathbb CP^1$ solitons in $2+1$ dimensions”, Phys. Lett. B, 537 (2002), 165–172, arXiv: hep-th/0203125 | DOI | MR | Zbl
[9] Lechtenfeld O., Popov A. D., “Noncommutative multi-solitons in $2+1$ dimensions”, J. High Energy Phys., 2001:11 (2001), 040, 32 pp., arXiv: hep-th/0106213 | DOI | MR
[10] Chu C.-S., Lechtenfeld O., “Time-space noncommutative Abelian solitons”, Phys. Lett. B, 625 (2005), 145–155, arXiv: hep-th/0507062 | DOI | MR
[11] Klawunn M., Lechtenfeld O., Petersen S., “Moduli-space dynamics of noncommutative Abelian sigma-model solitons”, J. High Energy Phys., 2006:6 (2006), 028, 18 pp., arXiv: hep-th/0604219 | DOI | MR
[12] Furuuchi K., “Instantons on noncommutative $\mathbb R^4$ and projection operators”, Progr. Theoret. Phys., 103 (2000), 1043–1068, arXiv: ; Furuuchi K., “Equivalence of projections as gauge equivalence on noncommutative space”, Comm. Math. Phys., 217 (2001), 579–593, arXiv: hep-th/9912047hep-th/0005199 | DOI | MR | DOI | MR | Zbl
[13] Abramowitz M., Stegun I. A., Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publications, Inc., New York, 1992 | MR
[14] Li L.-W., Kang X.-K., Leong M.-S., Spheroidal wave functions in electromagnetic theory, John Wiley Sons, New York, 2002
[15] Gel'fand I. M., Yaglom A. M., “Integration in functional spaces and its applications in quantum physics”, J. Math. Phys., 1 (1960), 48–69 | DOI | MR
[16] Levit S., Smilansky U., “A theorem on infinite products of eigenvalues of Sturm–Liouville type operators”, Proc. Amer. Math. Soc., 65 (1977), 299–302 | DOI | MR | Zbl
[17] Kirsten K., Spectral functions in mathematics and physics, Chapman-Hall, London, 2001; Kirsten K., Loya P., “Computation of determinants using contour integrals”, Amer. J. Phys., 76 (2008), 60–64, arXiv: 0707.3755 | DOI
[18] Rubey M., Hebisch W., Extended rate, more GFUN, arXiv: math.CO/0702086