@article{SIGMA_2010_6_a42,
author = {David M. Schmidtt},
title = {Supersymmetry of {Affine} {Toda} {Models} as {Fermionic} {Symmetry} {Flows} of the {Extended} {mKdV} {Hierarchy}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a42/}
}
TY - JOUR AU - David M. Schmidtt TI - Supersymmetry of Affine Toda Models as Fermionic Symmetry Flows of the Extended mKdV Hierarchy JO - Symmetry, integrability and geometry: methods and applications PY - 2010 VL - 6 UR - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a42/ LA - en ID - SIGMA_2010_6_a42 ER -
David M. Schmidtt. Supersymmetry of Affine Toda Models as Fermionic Symmetry Flows of the Extended mKdV Hierarchy. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a42/
[1] Aratyn H., Gomes J. F., de Castro G. M., Silka M. B., Zimerman A. H., “Supersymmetry for integrable hierarchies on loop superalgebras”, J. Phys. A: Math. Gen., 38 (2005), 9341–9357, arXiv: hep-th/0508008 | DOI | MR | Zbl
[2] Aratyn H., Gomes J. F., Zimerman A. H., “Integrable hierarchy for multidimensional Toda equations and topological–anti-topological fusion”, J. Geom. Phys., 46 (2003), 21–47, arXiv: hep-th/0107056 | DOI | MR | Zbl
[3] Aratyn H., Gomes J. F., Zimerman A. H., “Supersymmetry and the KdV equations for integrable hierarchies with a half-integer gradation”, Nuclear Phys. B, 676 (2004), 537–571, arXiv: hep-th/0309099 | DOI | MR | Zbl
[4] Aratyn H., Gomes J. F., Zimerman A. H., Nisimov E., Pacheva S., “Symmetry flows, conservation laws and dressing approach to the integrable models”, Integrable Hierarchies and Modern Physical Theories (Chicago, 2000), NATO Sci. Ser. II Math. Phys. Chem., 18, Kluwer Acad. Publ., Dordrecht, 2001, 243–275, arXiv: nlin.SI/0012042 | MR | Zbl
[5] Au G., Spence B., “Hamiltonian reduction and supersymmetric Toda models”, Modern Phys. Lett. A, 10 (1995), 2157–2168, arXiv: hep-th/9505026 | DOI | MR | Zbl
[6] Babelon O., Bernard D., “Dressing symmetries”, Comm. Math. Phys., 149 (1992), 279–306, arXiv: hep-th/9111036 | DOI | MR | Zbl
[7] Babelon O., Bernard D., Talon M., Introduction to classical integrable systems, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2003 | MR | Zbl
[8] Dargis P., Mathieu P., “Nonlocal conservation laws for supersymmetric KdV equations”, Phys. Lett. A, 176 (1993), 67–74, arXiv: hep-th/9301080 | DOI
[9] Delduc F., Gallot L., “Supersymmetric Drinfeld–Sokolov reduction”, J. Math. Phys., 39 (1998), 4729–4745, arXiv: solv-int/9802013 | DOI | MR | Zbl
[10] Delduc F., Ragoucy E., Sorba P., “Super-Toda theories and $W$-algebras from superspace Wess–Zumino–Witten models”, Comm. Math. Phys., 146 (1992), 403–426 | DOI | MR | Zbl
[11] Evans J., Hollowood T., “Supersymmetric Toda field theories”, Nuclear Phys. B, 352 (1991), 723–768 | DOI | MR
[12] Evans J. M., Madsen J. O., “Integrability versus supersymmetry”, Phys. Lett. B, 389 (1996), 665–672, arXiv: hep-th/9608190 | DOI | MR
[13] Ferreira L. A., Gervais J.-L., Guillén J. S., Saveliev M. V., “Affine Toda systems coupled to matter fields”, Nuclear Phys. B, 470 (1996), 236–288, arXiv: hep-th/9512105 | DOI | MR | Zbl
[14] Gervais J.-L., Saveliev M. V., “Higher grading generalizations of the Toda systems”, Nuclear Phys. B, 453 (1995), 449–476, arXiv: hep-th/9505047 | DOI | MR
[15] Gomes J. F., Schmidtt D. M., Zimerman A. H., “Super-WZNW with reductions to supersymmetric and fermionic integrable models”, Nuclear Phys. B, 821 (2009), 553–576, arXiv: 0901.4040 | DOI | MR
[16] Gomes J. F., Starvaggi Franca G., de Melo G. R., Zimerman A. H., “Negative even grade mKdV hierarchy and its soliton solutions”, J. Phys. A: Math. Theor., 42 (2009), 445204, 11 pp., arXiv: 0906.5579 | DOI | MR
[17] Grigoriev M., Tseytlin A., “Pohlmeyer reduction of $\mathrm{AdS}_5\times S^5$ superstring sigma model”, Nuclear Phys. B, 800 (2008), 450–501, arXiv: 0711.0155 | DOI | MR | Zbl
[18] Inami T., Kanno H., “Lie superalgebraic approach to super Toda lattice and generalized super KdV equations”, Comm. Math. Phys., 136 (1991), 519–542 | DOI | MR | Zbl
[19] Madsen J. O., Miramontes J. L., “Non-local conservation laws and flow equations for supersymmetric integrable hierarchies”, Comm. Math. Phys., 217 (2001), 249–284, arXiv: hep-th/9905103 | DOI | MR | Zbl
[20] Manin Yu. I., Radul A. O., “A supersymmetric extension of the Kadomtsev–Petviashvili hierarchy”, Comm. Math. Phys., 98 (1985), 65–77 | DOI | MR | Zbl
[21] Miramontes J. L., “Tau-functions generating the conservation laws for generalized integrable hierarchies of KdV and affine Toda type”, Nuclear Phys. B, 547 (1999), 623–663, arXiv: hep-th/9809052 | DOI | MR | Zbl
[22] Olshanetsky M. A., “Supersymmetric two-dimensional Toda lattice”, Comm. Math. Phys., 88 (1983), 63–76 | DOI | MR | Zbl
[23] Schmidtt D. M., Fermionic symmetry flows in non-Abelian Toda models, in preparation
[24] Sorokin D. P., Toppan F., “An $n=(1,1)$ super-Toda model based on $\mathrm{OSp}(1|4)$”, Lett. Math. Phys., 42 (1997), 139–152, arXiv: hep-th/9610038 | DOI | MR | Zbl