Discrete Minimal Surface Algebras
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider discrete minimal surface algebras (DMSA) as generalized noncommutative analogues of minimal surfaces in higher dimensional spheres. These algebras appear naturally in membrane theory, where sequences of their representations are used as a regularization. After showing that the defining relations of the algebra are consistent, and that one can compute a basis of the enveloping algebra, we give several explicit examples of DMSAs in terms of subsets of $\mathfrak{sl}_n$ (any semi-simple Lie algebra providing a trivial example by itself). A special class of DMSAs are Yang–Mills algebras. The representation graph is introduced to study representations of DMSAs of dimension $d\le 4$, and properties of representations are related to properties of graphs. The representation graph of a tensor product is (generically) the Cartesian product of the corresponding graphs. We provide explicit examples of irreducible representations and, for coinciding eigenvalues, classify all the unitary representations of the corresponding algebras.
Keywords: noncommutative surface; minimal surface; discrete Laplace operator; graph representation; matrix regularization; membrane theory; Yang–Mills algebra.
@article{SIGMA_2010_6_a41,
     author = {Joakim Arnlind and Jens Hoppe},
     title = {Discrete {Minimal} {Surface} {Algebras}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a41/}
}
TY  - JOUR
AU  - Joakim Arnlind
AU  - Jens Hoppe
TI  - Discrete Minimal Surface Algebras
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a41/
LA  - en
ID  - SIGMA_2010_6_a41
ER  - 
%0 Journal Article
%A Joakim Arnlind
%A Jens Hoppe
%T Discrete Minimal Surface Algebras
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a41/
%G en
%F SIGMA_2010_6_a41
Joakim Arnlind; Jens Hoppe. Discrete Minimal Surface Algebras. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a41/

[1] Arnlind J., Graph techniques for matrix equations and eigenvalue dynamics, PhD Thesis, Royal Institute of Technology, 2008

[2] Arnlind J., “Representation theory of $C$-algebras for a higher-order class of spheres and tori”, J. Math. Phys., 49 (2008), 053502, 13 pp., arXiv: 0711.2943 | DOI | MR | Zbl

[3] Arnlind J., Bordemann M., Hofer L., HoppeJ., Shimada H., “Noncommutative Riemann surfaces by embeddings in $\mathbb R^3$”, Comm. Math. Phys., 288 (2009), 403–429, arXiv: 0711.2588 | DOI | MR | Zbl

[4] Arnlind J., Hoppe J., Theisen S., “Spinning membranes”, Phys. Lett. B, 599 (2004), 118–128 | DOI | MR

[5] Berger R., Dubois-Violette M., “Inhomogeneous Yang–Mills algebras”, Lett. Math. Phys., 76 (2006), 65–75, arXiv: math.QA/0511521 | DOI | MR | Zbl

[6] Bergman G. M., “The diamond lemma for ring theory”, Adv. in Math., 29 (1978), 178–218 | DOI | MR

[7] Bianchi L., “Sugli spazi a tre dimensioni che ammettono un gruppo continuo di movimenti”, Mem. Soc. Ital. delle Scienze (3), 11 (1898), 267–352 | Zbl

[8] Connes A., Dubois-Violette M., “Yang–Mills algebra”, Lett. Math. Phys., 61 (2002), 149–158, arXiv: math.QA/0206205 | DOI | MR | Zbl

[9] Fairlie D. B., Fletcher P., Zachos C. K., “Trigonometric structure constants for new infinite-dimensional algebras”, Phys. Lett. B, 218 (1989), 203–206 | DOI | MR | Zbl

[10] Harary F., Trauth C. A. Jr., “Connectedness of products of two directed graphs”, SIAM J. Appl. Math., 14 (1966), 250–254 | DOI | MR | Zbl

[11] Herscovich E., Solotar A., Representation theory of Yang–Mills algebras, arXiv: 0807.3974

[12] Hoppe J., Quantum theory of a massless relativistic surface and a two-dimensional bound state problem, PhD Thesis, MIT, 1982 available at http://dspace.mit.edu/handle/1721.1/15717

[13] Hoppe J., “Diffeomorphism groups, quantization, and $\mathrm{SU}(\infty)$”, Internat. J. Modern Phys. A, 4 (1989), 5235–5248 | DOI | MR | Zbl

[14] Hoppe J., Some classical solutions of membrane matrix model equations, arXiv: hep-th/9702169 | MR

[15] Lawson H. B. Jr., “Complete minimal surfaces in $S^3$”, Ann. of Math. (2), 92 (1970), 335–374 | DOI | MR | Zbl

[16] Nekrasov N., Lectures on open strings, and noncommutative gauge theories, arXiv: hep-th/0203109 | MR

[17] Sabidussi G., “Graph multiplication”, Math. Z, 72 (1959/1960), 446–457 | DOI | MR