@article{SIGMA_2010_6_a41,
author = {Joakim Arnlind and Jens Hoppe},
title = {Discrete {Minimal} {Surface} {Algebras}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a41/}
}
Joakim Arnlind; Jens Hoppe. Discrete Minimal Surface Algebras. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a41/
[1] Arnlind J., Graph techniques for matrix equations and eigenvalue dynamics, PhD Thesis, Royal Institute of Technology, 2008
[2] Arnlind J., “Representation theory of $C$-algebras for a higher-order class of spheres and tori”, J. Math. Phys., 49 (2008), 053502, 13 pp., arXiv: 0711.2943 | DOI | MR | Zbl
[3] Arnlind J., Bordemann M., Hofer L., HoppeJ., Shimada H., “Noncommutative Riemann surfaces by embeddings in $\mathbb R^3$”, Comm. Math. Phys., 288 (2009), 403–429, arXiv: 0711.2588 | DOI | MR | Zbl
[4] Arnlind J., Hoppe J., Theisen S., “Spinning membranes”, Phys. Lett. B, 599 (2004), 118–128 | DOI | MR
[5] Berger R., Dubois-Violette M., “Inhomogeneous Yang–Mills algebras”, Lett. Math. Phys., 76 (2006), 65–75, arXiv: math.QA/0511521 | DOI | MR | Zbl
[6] Bergman G. M., “The diamond lemma for ring theory”, Adv. in Math., 29 (1978), 178–218 | DOI | MR
[7] Bianchi L., “Sugli spazi a tre dimensioni che ammettono un gruppo continuo di movimenti”, Mem. Soc. Ital. delle Scienze (3), 11 (1898), 267–352 | Zbl
[8] Connes A., Dubois-Violette M., “Yang–Mills algebra”, Lett. Math. Phys., 61 (2002), 149–158, arXiv: math.QA/0206205 | DOI | MR | Zbl
[9] Fairlie D. B., Fletcher P., Zachos C. K., “Trigonometric structure constants for new infinite-dimensional algebras”, Phys. Lett. B, 218 (1989), 203–206 | DOI | MR | Zbl
[10] Harary F., Trauth C. A. Jr., “Connectedness of products of two directed graphs”, SIAM J. Appl. Math., 14 (1966), 250–254 | DOI | MR | Zbl
[11] Herscovich E., Solotar A., Representation theory of Yang–Mills algebras, arXiv: 0807.3974
[12] Hoppe J., Quantum theory of a massless relativistic surface and a two-dimensional bound state problem, PhD Thesis, MIT, 1982 available at http://dspace.mit.edu/handle/1721.1/15717
[13] Hoppe J., “Diffeomorphism groups, quantization, and $\mathrm{SU}(\infty)$”, Internat. J. Modern Phys. A, 4 (1989), 5235–5248 | DOI | MR | Zbl
[14] Hoppe J., Some classical solutions of membrane matrix model equations, arXiv: hep-th/9702169 | MR
[15] Lawson H. B. Jr., “Complete minimal surfaces in $S^3$”, Ann. of Math. (2), 92 (1970), 335–374 | DOI | MR | Zbl
[16] Nekrasov N., Lectures on open strings, and noncommutative gauge theories, arXiv: hep-th/0203109 | MR
[17] Sabidussi G., “Graph multiplication”, Math. Z, 72 (1959/1960), 446–457 | DOI | MR