@article{SIGMA_2010_6_a4,
author = {Giovanni Calvaruso and Eduardo Garc{\'\i}a-R{\'\i}o},
title = {Algebraic {Properties} of {Curvature} {Operators} in {Lorentzian} {Manifolds} with {Large} {Isometry} {Groups}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a4/}
}
TY - JOUR AU - Giovanni Calvaruso AU - Eduardo García-Río TI - Algebraic Properties of Curvature Operators in Lorentzian Manifolds with Large Isometry Groups JO - Symmetry, integrability and geometry: methods and applications PY - 2010 VL - 6 UR - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a4/ LA - en ID - SIGMA_2010_6_a4 ER -
%0 Journal Article %A Giovanni Calvaruso %A Eduardo García-Río %T Algebraic Properties of Curvature Operators in Lorentzian Manifolds with Large Isometry Groups %J Symmetry, integrability and geometry: methods and applications %D 2010 %V 6 %U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a4/ %G en %F SIGMA_2010_6_a4
Giovanni Calvaruso; Eduardo García-Río. Algebraic Properties of Curvature Operators in Lorentzian Manifolds with Large Isometry Groups. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a4/
[1] Batat W., Calvaruso G., De Leo B., “Curvature properties of Lorentzian manifolds with large isometry groups”, Math. Phys. Anal. Geom., 12 (2009), 201–217 | DOI | MR | Zbl
[2] Berndt J., Vanhecke L., “Two natural generalizations of locally symmetric spaces”, Differential Geom. Appl., 2 (1992), 57–80 | DOI | MR | Zbl
[3] Brozos-Vázquez M., Fiedler B., García-Río E., Gilkey P., Nikčević S., Stanilov G., Tsankov Y., Vázquez-Lorenzo R., Videv V., “Stanilov–Tsankov–Videv theory”, SIGMA, 3 (2007), 095, 13 pp., ages ; arXiv:0708.0957 | MR | Zbl
[4] Brozos-Vázquez M., García-Río E., Gilkey P., Nikčević S., Vázquez-Lorenzo R., The geometry of Walker manifolds, Synthesis Lectures on Mathematics and Statistics, 5, Morgan Claypool Publ., 2009
[5] Calvaruso G., “Three-dimensional Ivanov–Petrova manifolds”, J. Math. Phys., 50 (2009), 063509, 12 pp., ages | DOI | MR
[6] Calviño-Louzao E., García-Río E., Vázquez-Abal M. E., Vázquez-Lorenzo R., Curvature operators and generalizations of symmetric spaces in Lorentzian geometry, Preprint, 2009 | Zbl
[7] Cahen M., Leroy J., Parker M., Tricerri F., Vanhecke L., “Lorentz manifolds modelled on a Lorentz symmetric space”, J. Geom. Phys., 7 (1990), 571–581 | DOI | MR | Zbl
[8] Egorov I. P., “Riemannian spaces of the first three lacunary types in the geometric sense”, Dokl. Akad. Nauk. SSSR, 150 (1963), 730–732 | MR
[9] García-Río E., Haji-Badali A., Vázquez-Lorenzo R., “Lorentzian three-manifolds with special curvature operators”, Classical Quantum Gravity, 25 (2008), 015003, 13 pp., ages | DOI | MR | Zbl
[10] García-Río E., Haji-Badali A., Vázquez-Abal M. E., Vázquez-Lorenzo R., “Lorentzian 3-manifolds with commuting curvature operators”, Int. J. Geom. Methods Mod. Phys., 5 (2008), 557–572 | DOI | MR | Zbl
[11] Gilkey P., “Riemannian manifolds whose skew-symmetric curvature operator has constant eigenvalues. II”, Differential Geometry and Applications (Brno, 1998), Masaryk Univ., Brno, 1999, 73–87 | MR | Zbl
[12] Gilkey P., Geometric properties of natural operators defined by the Riemann curvature tensor, World Scientific Publishing Co. Inc., River Edge, NJ, 2001 | MR
[13] Gilkey P., Leahy J. V., Sadofsky H., “Riemannian manifolds whose skew-symmetric curvature operator has constant eigenvalues,”, Indiana Univ. Math. J., 48 (1999), 615–634 | DOI | MR | Zbl
[14] Gilkey P., Nikčević S., “Pseudo-Riemannian Jacobi–Videv manifolds”, Int. J. Geom. Methods Mod. Phys., 4 (2007), 727–738 ; arXiv:0708.1096 | DOI | MR | Zbl
[15] Gilkey P., Nikčević S., “The classification of simple Jacobi–Ricci commuting algebraic curvature tensors”, Note Mat., 28:1 (2008), 341–348 ; arXiv:0710.2080 | MR
[16] Gilkey P., Zhang T., “Algebraic curvature tensors for indefinite metrics whose skew-symmetric curvature operator has constant Jordan normal form”, Houston J. Math., 28 (2002), 311–328 ; math.DG/0205079 | MR | Zbl
[17] Haesen S., Verstraelen L., “Natural intrinsic geometrical symmetries”, SIGMA, 5 (2009), 086, 14 pp., ages ; arXiv:0909.0478 | MR
[18] Hall G. S., Symmetries and curvature structure in general relativity, World Scientific Lecture Notes in Physics, 46, World Scientific Publishing Co., Inc., River Edge, NJ, 2004 | MR | Zbl
[19] Ivanov S., Petrova I., “Riemannian manifolds in which certain curvature operator has constant eigenvalues along each circle”, Ann. Global Anal. Geom., 15 (1997), 157–171 | DOI | MR | Zbl
[20] Nikolayevsky Y., “Riemannian manifolds whose curvature operator $R(X,Y)$ has constant eigenvalues”, Bull. Austral. Math. Soc., 70 (2004), 301–319 ; math.DG/0311429 | DOI | MR | Zbl
[21] Patrangenaru V., “Lorentz manifolds with the three largest degrees of symmetry”, Geom. Dedicata, 102 (2003), 25–33 | DOI | MR | Zbl
[22] Patrangenaru V., “Locally homogeneous pseudo-Riemannian manifolds”, J. Geom. Phys., 17 (1995), 59–72 | DOI | MR | Zbl