@article{SIGMA_2010_6_a39,
author = {Tomasz Brzezi\'nski},
title = {Integral calculus on $E_q(2)$},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a39/}
}
Tomasz Brzeziński. Integral calculus on $E_q(2)$. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a39/
[1] Brzeziński T., “Non-commutative connections of the second kind”, J. Algebra Appl., 7 (2008), 557–573, arXiv: 0802.0445 | DOI | MR | Zbl
[2] Brzeziński T., El Kaoutit L., Lomp C., “Non-commutative integral forms and twisted multi-derivations”, J. Noncommut. Geom., 4 (2010), 281–312, arXiv: 0901.2710 | DOI | Zbl
[3] Goodearl K. R., Letzter E. S., Prime ideals in skew and $q$-skew polynomial rings, Mem. Amer. Math. Soc., 109, no. 521, 1994, 106 pp. | MR
[4] Krähmer U., “Poincaré duality in Hochschild (co)homology”, New Techniques in Hopf Algebras and Graded Ring Theory, K. Vlaam. Acad. Belgie Wet. Kunsten (KVAB), Brussels, 2007, 117–125 | MR | Zbl
[5] Manin Yu. I., Gauge field theory and complex geometry, Grundlehren der Mathematischen Wissenschaften, 289, Springer-Verlag, Berlin, 1988 | MR | Zbl
[6] Penkov I. B., “$\mathcal D$-modules on supermanifolds”, Invent. Math., 71 (1983), 501–512 | DOI | MR | Zbl
[7] Van den Bergh M., “A relation between Hochschild homology and cohomology for Gorenstein rings”, Proc. Amer. Math. Soc., 130 (2002), 2809–2810 ; Erratum Proc. Amer. Math. Soc., 126 (1998), 1345–1348 | DOI | MR | DOI | MR | Zbl
[8] Verbovetsky A., “Differential operators over quantum spaces”, Acta Appl. Math., 49 (1997), 339–361 | DOI | MR | Zbl
[9] Vinogradov M. M., “Co-connections and integral forms”, Russian Acad. Sci. Dokl. Math., 50 (1995), 229–233 | MR
[10] Woronowicz S. L., “Twisted $\mathrm{SU}(2)$ group. An example of a noncommutative differential calculus”, Publ. Res. Inst. Math. Sci., 23 (1987), 117–181 | DOI | MR | Zbl
[11] Woronowicz S. L., “Quantum $SU(2)$ and $E(2)$ groups. Contraction procedure”, Comm. Math. Phys., 149 (1992), 637–652 | DOI | MR | Zbl