Integral calculus on $E_q(2)$
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The complexes of integral forms on the quantum Euclidean group $E_q(2)$ and the quantum plane are defined and their isomorphisms with the corresponding de Rham complexes are established.
Keywords: integral forms; hom-connection; quantum Euclidean group.
@article{SIGMA_2010_6_a39,
     author = {Tomasz Brzezi\'nski},
     title = {Integral calculus on $E_q(2)$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a39/}
}
TY  - JOUR
AU  - Tomasz Brzeziński
TI  - Integral calculus on $E_q(2)$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a39/
LA  - en
ID  - SIGMA_2010_6_a39
ER  - 
%0 Journal Article
%A Tomasz Brzeziński
%T Integral calculus on $E_q(2)$
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a39/
%G en
%F SIGMA_2010_6_a39
Tomasz Brzeziński. Integral calculus on $E_q(2)$. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a39/

[1] Brzeziński T., “Non-commutative connections of the second kind”, J. Algebra Appl., 7 (2008), 557–573, arXiv: 0802.0445 | DOI | MR | Zbl

[2] Brzeziński T., El Kaoutit L., Lomp C., “Non-commutative integral forms and twisted multi-derivations”, J. Noncommut. Geom., 4 (2010), 281–312, arXiv: 0901.2710 | DOI | Zbl

[3] Goodearl K. R., Letzter E. S., Prime ideals in skew and $q$-skew polynomial rings, Mem. Amer. Math. Soc., 109, no. 521, 1994, 106 pp. | MR

[4] Krähmer U., “Poincaré duality in Hochschild (co)homology”, New Techniques in Hopf Algebras and Graded Ring Theory, K. Vlaam. Acad. Belgie Wet. Kunsten (KVAB), Brussels, 2007, 117–125 | MR | Zbl

[5] Manin Yu. I., Gauge field theory and complex geometry, Grundlehren der Mathematischen Wissenschaften, 289, Springer-Verlag, Berlin, 1988 | MR | Zbl

[6] Penkov I. B., “$\mathcal D$-modules on supermanifolds”, Invent. Math., 71 (1983), 501–512 | DOI | MR | Zbl

[7] Van den Bergh M., “A relation between Hochschild homology and cohomology for Gorenstein rings”, Proc. Amer. Math. Soc., 130 (2002), 2809–2810 ; Erratum Proc. Amer. Math. Soc., 126 (1998), 1345–1348 | DOI | MR | DOI | MR | Zbl

[8] Verbovetsky A., “Differential operators over quantum spaces”, Acta Appl. Math., 49 (1997), 339–361 | DOI | MR | Zbl

[9] Vinogradov M. M., “Co-connections and integral forms”, Russian Acad. Sci. Dokl. Math., 50 (1995), 229–233 | MR

[10] Woronowicz S. L., “Twisted $\mathrm{SU}(2)$ group. An example of a noncommutative differential calculus”, Publ. Res. Inst. Math. Sci., 23 (1987), 117–181 | DOI | MR | Zbl

[11] Woronowicz S. L., “Quantum $SU(2)$ and $E(2)$ groups. Contraction procedure”, Comm. Math. Phys., 149 (1992), 637–652 | DOI | MR | Zbl