One-Loop Calculations and Detailed Analysis of the Localized Non-Commutative $p^{-2}$ $U(1)$ Gauge Model
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper carries forward a series of articles describing our enterprise to construct a gauge equivalent for the $\theta$-deformed $\frac1{p^2}$ model originally introduced by Gurau et. al. [Comm. Math. Phys. 287 (2009), 275–290]. It is shown that breaking terms of the form used by Vilar [J. Phys. A: Math. Theor. 43 (2010), 135401, 13 pages] and ourselves [Eur. Phys. J. C: Part. Fields 62 (2009), 433–443] to localize the BRST covariant operator $(D^2\theta^2D^2)^{-1}$ lead to difficulties concerning renormalization. The reason is that this dimensionless operator is invariant with respect to any symmetry of the model, and can be inserted to arbitrary power. In the present article we discuss explicit one-loop calculations, and analyze the mechanism the mentioned problems originate from.
Keywords: noncommutative field theory; gauge field theories; renormalization.
@article{SIGMA_2010_6_a36,
     author = {Daniel N. Blaschke and Arnold Rofner and Ren\'e I. P. Sedmik},
     title = {One-Loop {Calculations} and {Detailed} {Analysis} of the {Localized} {Non-Commutative} $p^{-2}$ $U(1)$ {Gauge} {Model}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a36/}
}
TY  - JOUR
AU  - Daniel N. Blaschke
AU  - Arnold Rofner
AU  - René I. P. Sedmik
TI  - One-Loop Calculations and Detailed Analysis of the Localized Non-Commutative $p^{-2}$ $U(1)$ Gauge Model
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a36/
LA  - en
ID  - SIGMA_2010_6_a36
ER  - 
%0 Journal Article
%A Daniel N. Blaschke
%A Arnold Rofner
%A René I. P. Sedmik
%T One-Loop Calculations and Detailed Analysis of the Localized Non-Commutative $p^{-2}$ $U(1)$ Gauge Model
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a36/
%G en
%F SIGMA_2010_6_a36
Daniel N. Blaschke; Arnold Rofner; René I. P. Sedmik. One-Loop Calculations and Detailed Analysis of the Localized Non-Commutative $p^{-2}$ $U(1)$ Gauge Model. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a36/

[1] Gurau R., Magnen J., Rivasseau V., Tanasa A., “A translation-invariant renormalizable non-commutative scalar model”, Comm. Math. Phys., 287 (2009), 275–290, arXiv: 0802.0791 | DOI | MR | Zbl

[2] Vilar L. C. Q., Ventura O. S., Tedesco D. G., Lemes V. E. R., “On the renormalizability of noncommutative $U(1)$ gauge theory – an algebraic approach”, J. Phys. A: Math. Theor., 43 (2010), 135401, 13 pp., arXiv: 0902.2956 | DOI | Zbl

[3] Blaschke D. N., Rofner A., Schweda M., Sedmik R. I. P., “One-loop calculations for a translation invariant non-commutative gauge model”, Eur. Phys. J. C: Part. Fields, 62 (2009), 433–443, arXiv: 0901.1681 | DOI | MR

[4] Minwalla S., Van Raamsdonk M., Seiberg N., “Noncommutative perturbative dynamics”, J. High Energy Phys., 2000:2 (2000), 020, 30 pp., arXiv: hep-th/9912072 | DOI | MR

[5] Matusis A., Susskind L., Toumbas N., “The IR/UV connection in the non-commutative gauge theories”, J. High Energy Phys., 2000:12 (2000), 002, 18 pp., arXiv: hep-th/0002075 | DOI | MR

[6] Tanasa A., “Scalar and gauge translation-invariant noncommutative models”, Romanian J. Phys., 53 (2008), 1207–1212, arXiv: 0808.3703 | MR

[7] Rivasseau V., “Non-commutative renormalization”, Quantum Spaces – Poincaré Seminar 2007, Prog. Math. Phys., 53, eds. B. Duplantier and V. Rivasseau, Birkhäuser, Basel, 2007, 19–107, arXiv: 0705.0705 | DOI | MR | Zbl

[8] Douglas M. R., Nekrasov N. A., “Noncommutative field theory”, Rev. Modern Phys., 73 (2001), 977–1029, arXiv: hep-th/0106048 | DOI | MR

[9] Grosse H., Wulkenhaar R., “Renormalisation of $\phi^4$ theory on noncommutative $\mathbb R^2$ in the matrix base”, J. High Energy Phys., 2003:12 (2003), 019, 26 pp., arXiv: hep-th/0307017 | DOI | MR

[10] Grosse H., Vignes-Tourneret F., Quantum field theory on the degenerate Moyal space, arXiv: 0803.1035

[11] Rivasseau V., Vignes-Tourneret F., Wulkenhaar R., “Renormalization of noncommutative $\phi^4$-theory by multi-scale analysis”, Comm. Math. Phys., 262 (2006), 565–594, arXiv: hep-th/0501036 | DOI | MR | Zbl

[12] Gurau R., Magnen J., Rivasseau V., Vignes-Tourneret F., “Renormalization of non-commutative $\Phi^4_4$ field theory in $x$ space”, Comm. Math. Phys., 267 (2006), 515–542, arXiv: hep-th/0512271 | DOI | MR | Zbl

[13] Grosse H., Wulkenhaar R., “Renormalisation of $\phi^4$ theory on noncommutative $\mathbb R^4$ in the matrix base”, Comm. Math. Phys., 256 (2005), 305–374, arXiv: hep-th/0401128 | DOI | MR | Zbl

[14] Blaschke D. N., Gieres F., Kronberger E., Reis T., Schweda M., Sedmik R. I. P., “Quantum corrections for translation-invariant renormalizable non-commutative $\phi^4$ theory”, J. High Energy Phys., 2008:11 (2008), 074, 16 pp., arXiv: 0807.3270 | DOI | MR | Zbl

[15] Ben Geloun J., Tanasa A., “One-loop $\beta$ functions of a translation-invariant renormalizable noncommutative scalar model”, Lett. Math. Phys., 86 (2008), 19–32, arXiv: 0806.3886 | DOI | MR | Zbl

[16] Blaschke D. N., Gieres F., Kronberger E., Schweda M., Wohlgenannt M., “Translation-invariant models for non-commutative gauge fields”, J. Phys. A: Math. Theor., 41 (2008), 252002, 7 pp., arXiv: 0804.1914 | DOI | MR | Zbl

[17] Blaschke D.N., Rofner A., Schweda M., Sedmik R.I.P.,, “Improved localization of a renormalizable non-commutative translation invariant $U(1)$ gauge model”, Europhys. Lett., 86 (2009), 51002, 6 pp., arXiv: 0903.4811 | DOI | MR

[18] Zwanziger D., “Local and renormalizable action from the Gribov horizon”, Nuclear Phys. B, 323 (1989), 513–544 | DOI | MR

[19] Zwanziger D., “Renormalizability of the critical limit of lattice gauge theory by BRS invariance”, Nuclear Phys. B, 399 (1993), 477–513 | DOI | MR

[20] Dudal D., Gracey J., Sorella S. P., Vandersickel N., Verschelde H., “A refinement of the Gribov–Zwanziger approach in the Landau gauge: infrared propagators in harmony with the lattice results”, Phys. Rev. D, 78 (2008), 065047, 30 pp., arXiv: 0806.4348 | DOI

[21] Baulieu L., Sorella S. P., “Soft breaking of BRST invariance for introducing non-perturbative infrared effects in a local and renormalizable way”, Phys. Lett. B, 671 (2009), 481–485, arXiv: 0808.1356 | DOI | MR

[22] Blaschke D. N., Kronberger E., Rofner A., Schweda M., Sedmik R. I. P., Wohlgenannt M., “On the problem of renormalizability in non-commutative gauge field models – a critical review”, Fortschr. Phys., 58 (2010), 364–372, arXiv: 0908.0467 | DOI

[23] Hayakawa M., “Perturbative analysis on infrared aspects of noncommutative QED on $\mathbb R^4$”, Phys. Lett. B, 478 (2000), 394–400, arXiv: hep-th/9912094 | DOI | MR | Zbl

[24] Armoni A., “Comments on perturbative dynamics of non-commutative Yang–Mills theory”, Nuclear Phys. B, 593 (2001), 229–242, arXiv: hep-th/0005208 | DOI | MR | Zbl

[25] Ruiz Ruiz F., “Gauge-fixing independence of IR divergences in non-commutative $U(1)$, perturbative tachyonic instabilities and supersymmetry”, Phys. Lett. B, 502 (2001), 274–278, arXiv: hep-th/0012171 | DOI | MR | Zbl

[26] Attems M., Blaschke D. N., Ortner M., Schweda M., Stricker S., Weiretmayr M., “Gauge independence of IR singularities in non-commutative QFT – and interpolating gauges”, J. High Energy Phys., 2005:07 (2005), 071, 10 pp., arXiv: hep-th/0506117 | DOI | MR