@article{SIGMA_2010_6_a36,
author = {Daniel N. Blaschke and Arnold Rofner and Ren\'e I. P. Sedmik},
title = {One-Loop {Calculations} and {Detailed} {Analysis} of the {Localized} {Non-Commutative} $p^{-2}$ $U(1)$ {Gauge} {Model}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a36/}
}
TY - JOUR
AU - Daniel N. Blaschke
AU - Arnold Rofner
AU - René I. P. Sedmik
TI - One-Loop Calculations and Detailed Analysis of the Localized Non-Commutative $p^{-2}$ $U(1)$ Gauge Model
JO - Symmetry, integrability and geometry: methods and applications
PY - 2010
VL - 6
UR - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a36/
LA - en
ID - SIGMA_2010_6_a36
ER -
%0 Journal Article
%A Daniel N. Blaschke
%A Arnold Rofner
%A René I. P. Sedmik
%T One-Loop Calculations and Detailed Analysis of the Localized Non-Commutative $p^{-2}$ $U(1)$ Gauge Model
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a36/
%G en
%F SIGMA_2010_6_a36
Daniel N. Blaschke; Arnold Rofner; René I. P. Sedmik. One-Loop Calculations and Detailed Analysis of the Localized Non-Commutative $p^{-2}$ $U(1)$ Gauge Model. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a36/
[1] Gurau R., Magnen J., Rivasseau V., Tanasa A., “A translation-invariant renormalizable non-commutative scalar model”, Comm. Math. Phys., 287 (2009), 275–290, arXiv: 0802.0791 | DOI | MR | Zbl
[2] Vilar L. C. Q., Ventura O. S., Tedesco D. G., Lemes V. E. R., “On the renormalizability of noncommutative $U(1)$ gauge theory – an algebraic approach”, J. Phys. A: Math. Theor., 43 (2010), 135401, 13 pp., arXiv: 0902.2956 | DOI | Zbl
[3] Blaschke D. N., Rofner A., Schweda M., Sedmik R. I. P., “One-loop calculations for a translation invariant non-commutative gauge model”, Eur. Phys. J. C: Part. Fields, 62 (2009), 433–443, arXiv: 0901.1681 | DOI | MR
[4] Minwalla S., Van Raamsdonk M., Seiberg N., “Noncommutative perturbative dynamics”, J. High Energy Phys., 2000:2 (2000), 020, 30 pp., arXiv: hep-th/9912072 | DOI | MR
[5] Matusis A., Susskind L., Toumbas N., “The IR/UV connection in the non-commutative gauge theories”, J. High Energy Phys., 2000:12 (2000), 002, 18 pp., arXiv: hep-th/0002075 | DOI | MR
[6] Tanasa A., “Scalar and gauge translation-invariant noncommutative models”, Romanian J. Phys., 53 (2008), 1207–1212, arXiv: 0808.3703 | MR
[7] Rivasseau V., “Non-commutative renormalization”, Quantum Spaces – Poincaré Seminar 2007, Prog. Math. Phys., 53, eds. B. Duplantier and V. Rivasseau, Birkhäuser, Basel, 2007, 19–107, arXiv: 0705.0705 | DOI | MR | Zbl
[8] Douglas M. R., Nekrasov N. A., “Noncommutative field theory”, Rev. Modern Phys., 73 (2001), 977–1029, arXiv: hep-th/0106048 | DOI | MR
[9] Grosse H., Wulkenhaar R., “Renormalisation of $\phi^4$ theory on noncommutative $\mathbb R^2$ in the matrix base”, J. High Energy Phys., 2003:12 (2003), 019, 26 pp., arXiv: hep-th/0307017 | DOI | MR
[10] Grosse H., Vignes-Tourneret F., Quantum field theory on the degenerate Moyal space, arXiv: 0803.1035
[11] Rivasseau V., Vignes-Tourneret F., Wulkenhaar R., “Renormalization of noncommutative $\phi^4$-theory by multi-scale analysis”, Comm. Math. Phys., 262 (2006), 565–594, arXiv: hep-th/0501036 | DOI | MR | Zbl
[12] Gurau R., Magnen J., Rivasseau V., Vignes-Tourneret F., “Renormalization of non-commutative $\Phi^4_4$ field theory in $x$ space”, Comm. Math. Phys., 267 (2006), 515–542, arXiv: hep-th/0512271 | DOI | MR | Zbl
[13] Grosse H., Wulkenhaar R., “Renormalisation of $\phi^4$ theory on noncommutative $\mathbb R^4$ in the matrix base”, Comm. Math. Phys., 256 (2005), 305–374, arXiv: hep-th/0401128 | DOI | MR | Zbl
[14] Blaschke D. N., Gieres F., Kronberger E., Reis T., Schweda M., Sedmik R. I. P., “Quantum corrections for translation-invariant renormalizable non-commutative $\phi^4$ theory”, J. High Energy Phys., 2008:11 (2008), 074, 16 pp., arXiv: 0807.3270 | DOI | MR | Zbl
[15] Ben Geloun J., Tanasa A., “One-loop $\beta$ functions of a translation-invariant renormalizable noncommutative scalar model”, Lett. Math. Phys., 86 (2008), 19–32, arXiv: 0806.3886 | DOI | MR | Zbl
[16] Blaschke D. N., Gieres F., Kronberger E., Schweda M., Wohlgenannt M., “Translation-invariant models for non-commutative gauge fields”, J. Phys. A: Math. Theor., 41 (2008), 252002, 7 pp., arXiv: 0804.1914 | DOI | MR | Zbl
[17] Blaschke D.N., Rofner A., Schweda M., Sedmik R.I.P.,, “Improved localization of a renormalizable non-commutative translation invariant $U(1)$ gauge model”, Europhys. Lett., 86 (2009), 51002, 6 pp., arXiv: 0903.4811 | DOI | MR
[18] Zwanziger D., “Local and renormalizable action from the Gribov horizon”, Nuclear Phys. B, 323 (1989), 513–544 | DOI | MR
[19] Zwanziger D., “Renormalizability of the critical limit of lattice gauge theory by BRS invariance”, Nuclear Phys. B, 399 (1993), 477–513 | DOI | MR
[20] Dudal D., Gracey J., Sorella S. P., Vandersickel N., Verschelde H., “A refinement of the Gribov–Zwanziger approach in the Landau gauge: infrared propagators in harmony with the lattice results”, Phys. Rev. D, 78 (2008), 065047, 30 pp., arXiv: 0806.4348 | DOI
[21] Baulieu L., Sorella S. P., “Soft breaking of BRST invariance for introducing non-perturbative infrared effects in a local and renormalizable way”, Phys. Lett. B, 671 (2009), 481–485, arXiv: 0808.1356 | DOI | MR
[22] Blaschke D. N., Kronberger E., Rofner A., Schweda M., Sedmik R. I. P., Wohlgenannt M., “On the problem of renormalizability in non-commutative gauge field models – a critical review”, Fortschr. Phys., 58 (2010), 364–372, arXiv: 0908.0467 | DOI
[23] Hayakawa M., “Perturbative analysis on infrared aspects of noncommutative QED on $\mathbb R^4$”, Phys. Lett. B, 478 (2000), 394–400, arXiv: hep-th/9912094 | DOI | MR | Zbl
[24] Armoni A., “Comments on perturbative dynamics of non-commutative Yang–Mills theory”, Nuclear Phys. B, 593 (2001), 229–242, arXiv: hep-th/0005208 | DOI | MR | Zbl
[25] Ruiz Ruiz F., “Gauge-fixing independence of IR divergences in non-commutative $U(1)$, perturbative tachyonic instabilities and supersymmetry”, Phys. Lett. B, 502 (2001), 274–278, arXiv: hep-th/0012171 | DOI | MR | Zbl
[26] Attems M., Blaschke D. N., Ortner M., Schweda M., Stricker S., Weiretmayr M., “Gauge independence of IR singularities in non-commutative QFT – and interpolating gauges”, J. High Energy Phys., 2005:07 (2005), 071, 10 pp., arXiv: hep-th/0506117 | DOI | MR