@article{SIGMA_2010_6_a35,
author = {Ralph M. Kaufmann},
title = {Open/Closed {String} {Topology} and {Moduli} {Space} {Actions} via {Open/Closed} {Hochschild} {Actions}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a35/}
}
TY - JOUR AU - Ralph M. Kaufmann TI - Open/Closed String Topology and Moduli Space Actions via Open/Closed Hochschild Actions JO - Symmetry, integrability and geometry: methods and applications PY - 2010 VL - 6 UR - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a35/ LA - en ID - SIGMA_2010_6_a35 ER -
Ralph M. Kaufmann. Open/Closed String Topology and Moduli Space Actions via Open/Closed Hochschild Actions. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a35/
[1] Baas N. A., Cohen R. L., Ramírez A., “The topology of the category of open and closed strings”, Recent Developments in Algebraic Topology, Contemp. Math., 407, Amer. Math. Soc., Providence, RI, 2006, 11–26, arXiv: math.AT/0411080 | MR | Zbl
[2] Blumberg A. J., Cohen R. L., Teleman C., “Open-closed field theories, string topology, and Hochschild homology”, Alpine Perspectives on Algebraic Topology, Contemp. Math., 504, eds. C. Ausoni, K. Hess and J. Scherer, Amer. Math. Soc., Providence, RI, 2009, 53–76, arXiv: 0906.5198 | Zbl
[3] Chas M., Sullivan D., “String topology”, Ann. of Math. (to appear) , arXiv: math.GT/9911159
[4] Godin V., Higher string topology operations, arXiv: 0711.4859
[5] Harrelson E., Voronov A. A., Zuniga J. J., Open-closed moduli spaces and related algebraic structures, arXiv: 0709.3874
[6] Jones J. D. S., “Cyclic homology and equivariant homology”, Invent. Math., 87 (1987), 403–423 | DOI | MR | Zbl
[7] Kaufmann R. M., “Moduli space actions on the Hochschild co-chains of a Frobenius algebra. I. Cell operads”, J. Noncommut. Geom., 1 (2007), 333–384, arXiv: math.AT/0606064 | DOI | MR | Zbl
[8] Kaufmann R. M., “Moduli space actions on the Hochschild co-chains of a Frobenius algebra. II. Correlators”, J. Noncommut. Geom., 2 (2008), 283–332, arXiv: math.AT/0606065 | DOI | MR | Zbl
[9] Kaufmann R. M., “Noncommutative aspects of open/closed strings via foliations”, Rep. Math. Phys., 61 (2008), 281–293, arXiv: 0804.0608 | DOI | MR | Zbl
[10] Kaufmann R. M., “Dimension vs. genus: a surface realization of the little $k$-cubes and an $E_\infty$ operad”, Algebraic Topology – Old and New (M. M. Postnikov Memorial Conference), Banach Center Publ., 85, Polish Acad. Sci., Warsaw, 2009, 241–274, arXiv: 0801.0532 | DOI | MR | Zbl
[11] Kaufmann R. M., Penner R. B., “Closed/open string diagrammatics”, Nuclear Phys. B, 748 (2006), 335–379, arXiv: math.GT/0603485 | DOI | MR | Zbl
[12] Kaufmann R. M., Livernet M., Penner R. B., “Arc operads and arc algebras”, Geom. Topol., 7 (2003), 511–568, arXiv: math.GT/0209132 | DOI | MR | Zbl
[13] Losev A., Manin Yu., “New moduli spaces of pointed curves and pencils of flat connections”, Michigan Math. J., 48 (2000), 443–472, arXiv: math.AG/0001003 | DOI | MR | Zbl
[14] Markl M., Shnider S., Stasheff J., Operads in algebra, topology and physics, Mathematical Surveys and Monographs, 96, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl
[15] Penner R. C., “Decorated Teichmüller theory of bordered surfaces”, Comm. Anal. Geom., 12 (2004), 793–820 , arXiv: http://projecteuclid.org/getRecord?id= euclid.cag/1098468019math.GT/0210326 | MR | Zbl
[16] Quillen D., “Elementary proofs of some results of cobordism theory using Steenrod operations”, Adv. Math., 7 (1971), 29–56 | DOI | MR | Zbl
[17] Strebel K., Quadratic differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 5, Springer-Verlag, Berlin, 1984 | MR | Zbl
[18] Sullivan D., “Sigma models and string topology”, Graphs and Patterns in Mathematics and Theoretical Physics, Proc. Sympos. Pure Math., 73, Amer. Math. Soc., Providence, RI, 2005, 1–11 | MR | Zbl
[19] Sullivan D., “Open and closed string field theory interpreted in classical algebraic topology”, Topology, Geometry and Quantum Field Theory, London Math. Soc. Lecture Note Ser., 308, Cambridge Univ. Press, Cambridge, 2004, 344–357, arXiv: math.QA/0302332 | DOI | MR | Zbl
[20] Sullivan D., String topology: background and present state, arXiv: 0710.4141 | MR
[21] Tradler T., Zeinalian M., “Algebraic string operations”, $K$-Theory, 38 (2007), 59–82, arXiv: math.QA/0605770 | DOI | MR | Zbl