Monomial Crystals and Partition Crystals
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Recently Fayers introduced a large family of combinatorial realizations of the fundamental crystal $B(\Lambda_0)$ for $\widehat{\mathfrak{sl}}_\ell$, where the vertices are indexed by certain partitions. He showed that special cases of this construction agree with the Misra–Miwa realization and with Berg's ladder crystal. Here we show that another special case is naturally isomorphic to a realization using Nakajima's monomial crystal.
Keywords: crystal basis; partition; affine Kac–Moody algebra.
@article{SIGMA_2010_6_a34,
     author = {Peter Tingley},
     title = {Monomial {Crystals} and {Partition} {Crystals}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a34/}
}
TY  - JOUR
AU  - Peter Tingley
TI  - Monomial Crystals and Partition Crystals
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a34/
LA  - en
ID  - SIGMA_2010_6_a34
ER  - 
%0 Journal Article
%A Peter Tingley
%T Monomial Crystals and Partition Crystals
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a34/
%G en
%F SIGMA_2010_6_a34
Peter Tingley. Monomial Crystals and Partition Crystals. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a34/

[1] Berg C., $(\ell,0)$-JM partitions and a ladder based model for the basic crystal of $\widehat{\mathfrak{sl}}_\ell$, arXiv: 0901.3565

[2] Fayers M., “Partition models for the crystal of the basic $U_q(\widehat{\frak{sl}}_n)$-module”, J. Algebraic Combin. (to appear) , arXiv: 0906.4129 | DOI

[3] Foda O., Leclerc B., Okado M., Thibon J.-Y., Welsh T. A., “Branching functions of $A^{(1)}_{n-1}$ and Jantzen–Seitz problem for Ariki–Koike algebras”, Adv. Math., 141 (1999), 322–365, arXiv: q-alg/9710007 | DOI | MR | Zbl

[4] Frenkel E., Reshetikhin N., “The $q$-characters of representations of quantum affine algebras and deformations of $\mathcal W$-algebras”, Recent Developments in Quantum Affine Algebras and Related Topics (Raleigh, NC, 1998), Contemp. Math., 248, Amer. Math. Soc., Providence, RI, 1999, 163–205, arXiv: math.QA/9810055 | MR | Zbl

[5] Hernandez D., Nakajima H., “Level 0 monomial crystals”, Nagoya Math. J., 184 (2006), 85–153 , arXiv: http://projecteuclid.org/euclid.nmj/1167159343math.QA/0606174 | MR | Zbl

[6] Hong J., Kang S.-J., Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, 42, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[7] Jimbo M., Misra K. C., Miwa T., Okado M., “Combinatorics of representations of $\mathrm U_q(\widehat{\frak{sl}}(n))$ at $q=0$”, Comm. Math. Phys., 136 (1991), 543–566 | DOI | MR | Zbl

[8] Kang S.-J., Lee H., “Higher level affine crystals and Young walls”, Algebr. Represent. Theory, 9 (2006), 593–632, arXiv: math.QA/0310430 | DOI | MR | Zbl

[9] Kashiwara M., “On crystal bases”, Representations of Groups (Banff, AB, 1994), CMS Conf. Proc., 16, Amer. Math. Soc., Providence, RI, 1995, 155–197 | MR | Zbl

[10] Kashiwara M., “Realizations of crystals”, Combinatorial and Geometric Representation Theory (Seoul, 2001), Contemp. Math., 325, Amer. Math. Soc., Providence, RI, 2003, 133–139, arXiv: math.QA/0202268 | MR | Zbl

[11] Kim J.-A., “Monomial realization of crystal graphs for $U_q(A_n(1))$”, Math. Ann., 332 (2005), 17–35 | DOI | MR | Zbl

[12] Misra K., Miwa T., “Crystal base for the basic representation of $U_q(\widehat{\mathfrak{sl}}_n)$”, Comm. Math. Phys., 134 (1990), 79–88 | DOI | MR | Zbl

[13] Nakajima H., “$t$-analogs of $q$-characters of quantum affine algebras of type $A_n$, $D_n$”, Combinatorial and Geometric Representation Theory (Seoul, 2001), Contemp. Math., 325, Amer. Math. Soc., Providence, RI, 2003, 141–160, arXiv: math.QA/0204184 | MR | Zbl

[14] Tingley P., “Three combinatorial models for $\widehat{\mathrm sl}_n$ crystals, with applications to cylindric plane partitions”, Int. Math. Res. Not. IMRN, 2008:2 (2008), Art. ID rnm143, 40 pp., arXiv: math.QA/0702062 | DOI | MR | Zbl