@article{SIGMA_2010_6_a34,
author = {Peter Tingley},
title = {Monomial {Crystals} and {Partition} {Crystals}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a34/}
}
Peter Tingley. Monomial Crystals and Partition Crystals. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a34/
[1] Berg C., $(\ell,0)$-JM partitions and a ladder based model for the basic crystal of $\widehat{\mathfrak{sl}}_\ell$, arXiv: 0901.3565
[2] Fayers M., “Partition models for the crystal of the basic $U_q(\widehat{\frak{sl}}_n)$-module”, J. Algebraic Combin. (to appear) , arXiv: 0906.4129 | DOI
[3] Foda O., Leclerc B., Okado M., Thibon J.-Y., Welsh T. A., “Branching functions of $A^{(1)}_{n-1}$ and Jantzen–Seitz problem for Ariki–Koike algebras”, Adv. Math., 141 (1999), 322–365, arXiv: q-alg/9710007 | DOI | MR | Zbl
[4] Frenkel E., Reshetikhin N., “The $q$-characters of representations of quantum affine algebras and deformations of $\mathcal W$-algebras”, Recent Developments in Quantum Affine Algebras and Related Topics (Raleigh, NC, 1998), Contemp. Math., 248, Amer. Math. Soc., Providence, RI, 1999, 163–205, arXiv: math.QA/9810055 | MR | Zbl
[5] Hernandez D., Nakajima H., “Level 0 monomial crystals”, Nagoya Math. J., 184 (2006), 85–153 , arXiv: http://projecteuclid.org/euclid.nmj/1167159343math.QA/0606174 | MR | Zbl
[6] Hong J., Kang S.-J., Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, 42, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl
[7] Jimbo M., Misra K. C., Miwa T., Okado M., “Combinatorics of representations of $\mathrm U_q(\widehat{\frak{sl}}(n))$ at $q=0$”, Comm. Math. Phys., 136 (1991), 543–566 | DOI | MR | Zbl
[8] Kang S.-J., Lee H., “Higher level affine crystals and Young walls”, Algebr. Represent. Theory, 9 (2006), 593–632, arXiv: math.QA/0310430 | DOI | MR | Zbl
[9] Kashiwara M., “On crystal bases”, Representations of Groups (Banff, AB, 1994), CMS Conf. Proc., 16, Amer. Math. Soc., Providence, RI, 1995, 155–197 | MR | Zbl
[10] Kashiwara M., “Realizations of crystals”, Combinatorial and Geometric Representation Theory (Seoul, 2001), Contemp. Math., 325, Amer. Math. Soc., Providence, RI, 2003, 133–139, arXiv: math.QA/0202268 | MR | Zbl
[11] Kim J.-A., “Monomial realization of crystal graphs for $U_q(A_n(1))$”, Math. Ann., 332 (2005), 17–35 | DOI | MR | Zbl
[12] Misra K., Miwa T., “Crystal base for the basic representation of $U_q(\widehat{\mathfrak{sl}}_n)$”, Comm. Math. Phys., 134 (1990), 79–88 | DOI | MR | Zbl
[13] Nakajima H., “$t$-analogs of $q$-characters of quantum affine algebras of type $A_n$, $D_n$”, Combinatorial and Geometric Representation Theory (Seoul, 2001), Contemp. Math., 325, Amer. Math. Soc., Providence, RI, 2003, 141–160, arXiv: math.QA/0204184 | MR | Zbl
[14] Tingley P., “Three combinatorial models for $\widehat{\mathrm sl}_n$ crystals, with applications to cylindric plane partitions”, Int. Math. Res. Not. IMRN, 2008:2 (2008), Art. ID rnm143, 40 pp., arXiv: math.QA/0702062 | DOI | MR | Zbl