On Quadrirational Yang–Baxter Maps
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use the classification of the quadrirational maps given by Adler, Bobenko and Suris to describe when such maps satisfy the Yang–Baxter relation. We show that the corresponding maps can be characterized by certain singularity invariance condition. This leads to some new families of Yang–Baxter maps corresponding to the geometric symmetries of pencils of quadrics.
Keywords: Yang–Baxter maps; birational maps; integrability.
@article{SIGMA_2010_6_a32,
     author = {V. G. Papageorgiou and Yu. B. Suris and A. G. Tongas and A. P. Veselov},
     title = {On {Quadrirational} {Yang{\textendash}Baxter} {Maps}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a32/}
}
TY  - JOUR
AU  - V. G. Papageorgiou
AU  - Yu. B. Suris
AU  - A. G. Tongas
AU  - A. P. Veselov
TI  - On Quadrirational Yang–Baxter Maps
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a32/
LA  - en
ID  - SIGMA_2010_6_a32
ER  - 
%0 Journal Article
%A V. G. Papageorgiou
%A Yu. B. Suris
%A A. G. Tongas
%A A. P. Veselov
%T On Quadrirational Yang–Baxter Maps
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a32/
%G en
%F SIGMA_2010_6_a32
V. G. Papageorgiou; Yu. B. Suris; A. G. Tongas; A. P. Veselov. On Quadrirational Yang–Baxter Maps. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a32/

[1] Adler V. E., Bobenko A. I., Suris Yu. B., “Geometry of Yang–Baxter maps: pencils of conics and quadrirational mappings”, Comm. Anal. Geom., 12 (2004), 967–1007, arXiv: math.QA/0307009 | MR | Zbl

[2] Duistermaat J. J., QRT and elliptic surfaces, Universitext, Springer, 2010

[3] Harrison B. K., “Bäcklund transformation for the Ernst equation of general relativity”, Phys. Rev. Lett., 41 (1978), 1197–1200 | DOI | MR

[4] Kakei S., Nimmo J. J. C., Willox R., “Yang–Baxter maps and the discrete KP hierarchy”, Glasg. Math. J., 51, no A (2009), 107–119 | DOI | MR

[5] Papageorgiou V. G., Tongas A. G., Veselov A. P., “Yang–Baxter maps and symmetries of integrable equations on quad-graphs”, J. Math. Phys., 47 (2006), 083502, 16 pp., arXiv: math.QA/0605206 | DOI | MR | Zbl

[6] Tongas A., Tsoubelis D., Xenitidis P., “A family of integrable nonlinear equations of hyperbolic type”, J. Math. Phys., 42 (2001), 5762–5784 | DOI | MR | Zbl

[7] Veselov A. P., “Yang–Baxter maps and integrable dynamics”, Phys. Lett. A, 314 (2003), 214–221, arXiv: math.QA/0205335 | DOI | MR | Zbl

[8] Veselov A. P., “Yang–Baxter maps: dynamical point of view”, Combinatorial Aspect of Integrable Systems, MSJ Mem., 17, Math. Soc. Japan, Tokyo, 2007, 145–167, arXiv: math.QA/0612814 | MR | Zbl

[9] Veselov A. P., “Integrable mappings”, Russian Math. Surveys, 46:5 (1991), 1–51 | DOI | MR | Zbl