@article{SIGMA_2010_6_a31,
author = {J\'er\^ome Dubois and Igor G. Korepanov and Evgeniy V. Martyushev},
title = {A~Euclidean {Geometric} {Invariant} of {Framed} {(Un)Knots} in {Manifolds}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a31/}
}
TY - JOUR AU - Jérôme Dubois AU - Igor G. Korepanov AU - Evgeniy V. Martyushev TI - A Euclidean Geometric Invariant of Framed (Un)Knots in Manifolds JO - Symmetry, integrability and geometry: methods and applications PY - 2010 VL - 6 UR - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a31/ LA - en ID - SIGMA_2010_6_a31 ER -
%0 Journal Article %A Jérôme Dubois %A Igor G. Korepanov %A Evgeniy V. Martyushev %T A Euclidean Geometric Invariant of Framed (Un)Knots in Manifolds %J Symmetry, integrability and geometry: methods and applications %D 2010 %V 6 %U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a31/ %G en %F SIGMA_2010_6_a31
Jérôme Dubois; Igor G. Korepanov; Evgeniy V. Martyushev. A Euclidean Geometric Invariant of Framed (Un)Knots in Manifolds. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a31/
[1] Atiyah M. F., “Topological quantum field theories”, Inst. Hautes Études Sci. Publ. Math., 68 (1988), 175–186 http://www.numdam.org/item?id=PMIHES_1988__68__175_0 | DOI | MR | Zbl
[2] Bel'kov S. I., Korepanov I. G., Martyushev E. V., A simple topological quantum field theory for manifolds with triangulated boundary, arXiv: 0907.3787
[3] Boden H. U., Herald C. M., Kirk P. A., Klassen E. P., “Gauge theoretic invariants of Dehn surgeries on knots”, Geom. Topol., 5 (2001), 143–226, arXiv: math.GT/9908020 | DOI | MR | Zbl
[4] Dubois J., “Non abelian Reidemeister torsion and volume form on the $\mathrm{SU}(2)$-representation space of knot groups”, Ann. Inst. Fourier (Grenoble), 55 (2005), 1685–1734 , arXiv: http://aif.cedram.org/item?id=AIF_2005__55_5_1685_0math.GT/0403470 | MR | Zbl
[5] Korepanov I. G., “Invariants of $\mathrm{PL}$-manifolds from metrized simplicial complexes. Three-dimensional case”, J. Nonlinear Math. Phys., 8 (2001), 196–210, arXiv: math.GT/0009225 | DOI | MR | Zbl
[6] Korepanov I. G., “Euclidean 4-simplices and invariants of four-dimensional manifolds. I. Moves $3\to3$”, Theoret. and Math. Phys., 131 (2002), 765–774, arXiv: math.GT/0211165 | DOI | MR | Zbl
[7] Korepanov I. G., “Euclidean 4-simplices and invariants of four-dimensional manifolds. II. An algebraic complex and moves $2\leftrightarrow4$”, Theoret. and Math. Phys., 133 (2002), 1338–1347, arXiv: math.GT/0211166 | DOI | MR | Zbl
[8] Korepanov I. G., “Euclidean 4-simplices and invariants of four-dimensional manifolds. III. Moves $1\leftrightarrow5$ and related structures,”, Theoret. and Math. Phys., 135 (2003), 601–613, arXiv: math.GT/0211167 | DOI | MR | Zbl
[9] Korepanov I. G., “$\mathrm{SL}(2)$-solution of the pentagon equation and invariants of three-dimensional manifolds”, Theoret. and Math. Phys., 138 (2004), 18–27, arXiv: math.AT/0304149 | DOI | MR | Zbl
[10] Korepanov I. G., Invariants of three-dimensional manifolds from four-dimensional Euclidean geometry, arXiv: math.GT/0611325
[11] Korepanov I. G., “Geometric torsions and invariants of manifolds with a triangulated boundary”, Theoret. and Math. Phys., 158 (2009), 82–95, arXiv: 0803.0123 | DOI | MR | Zbl
[12] Korepanov I. G., “Geometric torsions and an Atiyah-style topological field theory”, Theoret. and Math. Phys., 158 (2009), 344–354, arXiv: 0806.2514 | DOI | Zbl
[13] Korepanov I. G., Algebraic relations with anticommuting variables for four-dimensional Pachner moves $3\to3$ and $2\leftrightarrow4$, arXiv: 0911.1395
[14] Korepanov I. G., Kashaev R. M., Martyushev E. V., A finite-dimensional TQFT for three-manifolds based on group $\mathrm{PSL}(2,\mathbb C)$ and cross-ratios, arXiv: 0809.4239
[15] Korepanov I. G., Martyushev E. V., “Distinguishing three-dimensional lens spaces $L(7,1)$ and $L(7,2)$ by means of classical pentagon equation”, J. Nonlinear Math. Phys., 9 (2002), 86–98, arXiv: math.GT/0210343 | DOI | MR | Zbl
[16] Lickorish W. B. R., “Simplicial moves on complexes and manifolds”, Proceedings of the Kirbyfest (Berkeley, CA, 1998), Geom. Topol. Monogr., 2, Geom. Topol. Publ., Coventry, 1999, 299–320, arXiv: math.GT/9911256 | MR | Zbl
[17] Martyushev E. V., “Euclidean geometric invariants of links in 3-sphere”, Izv. Chelyabinsk. Nauchn. Tsentra, 2004:4(26) (2004), 1–5, arXiv: math.GT/0409241 | MR
[18] Martyushev E. V., Geometric invariants of three-dimensional manifolds, knots and links, Ph.D. Thesis, South Ural State University, 2007 (in Russian)
[19] Ponzano G., Regge T., “Semiclassical limit of Racah coefficients”, Spectroscopic and group Theoretical Methods in Physics, ed. F. Bloch, North-Holland Publ. Co., Amsterdam, 1968, 1–58
[20] Regge T., “General relativity without coordinates”, Nuovo Cimento (10), 19 (1961), 558–571 | DOI | MR
[21] Reidemeister K., “Homotopieringe und Linsenräume”, Abh. Math. Semin. Hamb. Univ., 11 (1935), 102–109 | DOI
[22] Turaev V., Introduction to combinatorial torsions, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2001 | MR | Zbl