A Euclidean Geometric Invariant of Framed (Un)Knots in Manifolds
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present an invariant of a three-dimensional manifold with a framed knot in it based on the Reidemeister torsion of an acyclic complex of Euclidean geometric origin. To show its nontriviality, we calculate the invariant for some framed (un)knots in lens spaces. Our invariant is related to a finite-dimensional fermionic topological quantum field theory.
Keywords: Pachner moves; Reidemeister torsion; framed knots; differential relations in Euclidean geometry; topological quantum field theory.
@article{SIGMA_2010_6_a31,
     author = {J\'er\^ome Dubois and Igor G. Korepanov and Evgeniy V. Martyushev},
     title = {A~Euclidean {Geometric} {Invariant} of {Framed} {(Un)Knots} in {Manifolds}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a31/}
}
TY  - JOUR
AU  - Jérôme Dubois
AU  - Igor G. Korepanov
AU  - Evgeniy V. Martyushev
TI  - A Euclidean Geometric Invariant of Framed (Un)Knots in Manifolds
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a31/
LA  - en
ID  - SIGMA_2010_6_a31
ER  - 
%0 Journal Article
%A Jérôme Dubois
%A Igor G. Korepanov
%A Evgeniy V. Martyushev
%T A Euclidean Geometric Invariant of Framed (Un)Knots in Manifolds
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a31/
%G en
%F SIGMA_2010_6_a31
Jérôme Dubois; Igor G. Korepanov; Evgeniy V. Martyushev. A Euclidean Geometric Invariant of Framed (Un)Knots in Manifolds. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a31/

[1] Atiyah M. F., “Topological quantum field theories”, Inst. Hautes Études Sci. Publ. Math., 68 (1988), 175–186 http://www.numdam.org/item?id=PMIHES_1988__68__175_0 | DOI | MR | Zbl

[2] Bel'kov S. I., Korepanov I. G., Martyushev E. V., A simple topological quantum field theory for manifolds with triangulated boundary, arXiv: 0907.3787

[3] Boden H. U., Herald C. M., Kirk P. A., Klassen E. P., “Gauge theoretic invariants of Dehn surgeries on knots”, Geom. Topol., 5 (2001), 143–226, arXiv: math.GT/9908020 | DOI | MR | Zbl

[4] Dubois J., “Non abelian Reidemeister torsion and volume form on the $\mathrm{SU}(2)$-representation space of knot groups”, Ann. Inst. Fourier (Grenoble), 55 (2005), 1685–1734 , arXiv: http://aif.cedram.org/item?id=AIF_2005__55_5_1685_0math.GT/0403470 | MR | Zbl

[5] Korepanov I. G., “Invariants of $\mathrm{PL}$-manifolds from metrized simplicial complexes. Three-dimensional case”, J. Nonlinear Math. Phys., 8 (2001), 196–210, arXiv: math.GT/0009225 | DOI | MR | Zbl

[6] Korepanov I. G., “Euclidean 4-simplices and invariants of four-dimensional manifolds. I. Moves $3\to3$”, Theoret. and Math. Phys., 131 (2002), 765–774, arXiv: math.GT/0211165 | DOI | MR | Zbl

[7] Korepanov I. G., “Euclidean 4-simplices and invariants of four-dimensional manifolds. II. An algebraic complex and moves $2\leftrightarrow4$”, Theoret. and Math. Phys., 133 (2002), 1338–1347, arXiv: math.GT/0211166 | DOI | MR | Zbl

[8] Korepanov I. G., “Euclidean 4-simplices and invariants of four-dimensional manifolds. III. Moves $1\leftrightarrow5$ and related structures,”, Theoret. and Math. Phys., 135 (2003), 601–613, arXiv: math.GT/0211167 | DOI | MR | Zbl

[9] Korepanov I. G., “$\mathrm{SL}(2)$-solution of the pentagon equation and invariants of three-dimensional manifolds”, Theoret. and Math. Phys., 138 (2004), 18–27, arXiv: math.AT/0304149 | DOI | MR | Zbl

[10] Korepanov I. G., Invariants of three-dimensional manifolds from four-dimensional Euclidean geometry, arXiv: math.GT/0611325

[11] Korepanov I. G., “Geometric torsions and invariants of manifolds with a triangulated boundary”, Theoret. and Math. Phys., 158 (2009), 82–95, arXiv: 0803.0123 | DOI | MR | Zbl

[12] Korepanov I. G., “Geometric torsions and an Atiyah-style topological field theory”, Theoret. and Math. Phys., 158 (2009), 344–354, arXiv: 0806.2514 | DOI | Zbl

[13] Korepanov I. G., Algebraic relations with anticommuting variables for four-dimensional Pachner moves $3\to3$ and $2\leftrightarrow4$, arXiv: 0911.1395

[14] Korepanov I. G., Kashaev R. M., Martyushev E. V., A finite-dimensional TQFT for three-manifolds based on group $\mathrm{PSL}(2,\mathbb C)$ and cross-ratios, arXiv: 0809.4239

[15] Korepanov I. G., Martyushev E. V., “Distinguishing three-dimensional lens spaces $L(7,1)$ and $L(7,2)$ by means of classical pentagon equation”, J. Nonlinear Math. Phys., 9 (2002), 86–98, arXiv: math.GT/0210343 | DOI | MR | Zbl

[16] Lickorish W. B. R., “Simplicial moves on complexes and manifolds”, Proceedings of the Kirbyfest (Berkeley, CA, 1998), Geom. Topol. Monogr., 2, Geom. Topol. Publ., Coventry, 1999, 299–320, arXiv: math.GT/9911256 | MR | Zbl

[17] Martyushev E. V., “Euclidean geometric invariants of links in 3-sphere”, Izv. Chelyabinsk. Nauchn. Tsentra, 2004:4(26) (2004), 1–5, arXiv: math.GT/0409241 | MR

[18] Martyushev E. V., Geometric invariants of three-dimensional manifolds, knots and links, Ph.D. Thesis, South Ural State University, 2007 (in Russian)

[19] Ponzano G., Regge T., “Semiclassical limit of Racah coefficients”, Spectroscopic and group Theoretical Methods in Physics, ed. F. Bloch, North-Holland Publ. Co., Amsterdam, 1968, 1–58

[20] Regge T., “General relativity without coordinates”, Nuovo Cimento (10), 19 (1961), 558–571 | DOI | MR

[21] Reidemeister K., “Homotopieringe und Linsenräume”, Abh. Math. Semin. Hamb. Univ., 11 (1935), 102–109 | DOI

[22] Turaev V., Introduction to combinatorial torsions, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2001 | MR | Zbl