On Classical Dynamics of Affinely-Rigid Bodies Subject to the Kirchhoff–Love Constraints
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article we consider the affinely-rigid body moving in the three-dimensional physical space and subject to the Kirchhoff–Love constraints, i.e., while it deforms homogeneously in the two-dimensional central plane of the body it simultaneously performs one-dimensional oscillations orthogonal to this central plane. For the polar decomposition we obtain the stationary ellipsoids as special solutions of the general, strongly nonlinear equations of motion. It is also shown that these solutions are conceptually different from those obtained earlier for the two-polar (singular value) decomposition.
Keywords: affinely-rigid bodies with degenerate dimension; Kirchhoff–Love constraints; polar decomposition; Green deformation tensor; deformation invariants; stationary ellipsoids as special solutions.
@article{SIGMA_2010_6_a30,
     author = {Vasyl Kovalchuk},
     title = {On {Classical} {Dynamics} of {Affinely-Rigid} {Bodies} {Subject} to the {Kirchhoff{\textendash}Love} {Constraints}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a30/}
}
TY  - JOUR
AU  - Vasyl Kovalchuk
TI  - On Classical Dynamics of Affinely-Rigid Bodies Subject to the Kirchhoff–Love Constraints
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a30/
LA  - en
ID  - SIGMA_2010_6_a30
ER  - 
%0 Journal Article
%A Vasyl Kovalchuk
%T On Classical Dynamics of Affinely-Rigid Bodies Subject to the Kirchhoff–Love Constraints
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a30/
%G en
%F SIGMA_2010_6_a30
Vasyl Kovalchuk. On Classical Dynamics of Affinely-Rigid Bodies Subject to the Kirchhoff–Love Constraints. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a30/

[1] Arnold V. I., Mathematical methods of classical mechanics, Springer Graduate Texts in Mathematics, 60, Springer-Verlag, New York, Heidelberg, 1978 | MR | Zbl

[2] Bogoyavlensky O. I., Methods in the qualitative theory of dynamical systems in astrophysics and gas dynamics, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985 | MR | Zbl

[3] Chandrasekhar S., Ellipsoidal figures of equilibrium, Yale University Press, New Haven, London, 1969 | Zbl

[4] Goldstein H., Classical mechanics, Addison-Wesley Press, Inc., Cambridge, Mass., 1951 | MR | Zbl

[5] Green A. E., Naghdi P. M., “A thermomechanical theory of a Cosserat point with application to composite materials”, Quart. J. Mech. Appl. Math., 44 (1991), 335–355 | DOI | MR | Zbl

[6] Kovalchuk V., Rożko E. E., “Classical models of affinely-rigid bodies with “thickness” in degenerate dimension”, J. Geom. Symmetry Phys., 14 (2009), 51–65, arXiv: 0902.3573 | MR | Zbl

[7] Lewis D., Simo J. C., “Nonlinear stability of rotating pseudo-rigid bodies”, Proc. Roy. Soc. London Ser. A, 427 (1990), 281–319 | DOI | MR | Zbl

[8] Love A. E. H., A treatise on the mathematical theory of elasticity, Dover, New York, 1996

[9] Nordenholz T. R., O'Reilly O. M., “On steady motions of isotropic, elastic Cosserat points”, IMA J. Appl. Math., 60 (1998), 55–72 | DOI | MR | Zbl

[10] Nordenholz T. R., O'Reilly O. M., “A class of motions of elastic, symmetric Cosserat points: existence, bifurcation, and stability”, Internat. J. Non-Linear Mech., 36 (2001), 353–374 | DOI | MR | Zbl

[11] Ro.{z}ko E. E., “Dynamics of affinely-rigid bodies with degenerate dimension”, Rep. Math. Phys., 56 (2005), 311–332 | DOI | MR | Zbl

[12] Ro.{z}ko E. E., Dynamical systems on homogeneous spaces and their applications to continuum mechanics, PhD Thesis, 2006 (in Polish)

[13] Rubin M. B., “On the theory of a Cosserat point and its application to the numerical solution of continuum problems”, J. Appl. Mech., 52 (1985), 368–372 | DOI | Zbl

[14] Sławianowski J. J., “The mechanics of the homogeneously-deformable body. Dynamical models with high symmetries”, Z. Angew. Math. Mech., 62 (1982), 229–240 | DOI

[15] Sławianowski J. J., Analytical mechanics of deformable bodies, PWN, Warszawa; Polish Scientific Publishers, Poznań, 1982 (in Polish)

[16] Sławianowski J. J., Kovalchuk V., “Invariant geodetic problems on the affine group and related Hamiltonian systems”, Rep. Math. Phys., 51 (2003), 371–379 | DOI | MR

[17] Sławianowski J. J., Kovalchuk V., Sławianowska A., Gołubowska B., Martens A., Rożko E. E., Zawistowski Z. J., “Affine symmetry in mechanics of collective and internal modes. I. Classical models”, Rep. Math. Phys., 54 (2004), 373–427, arXiv: 0802.3027 | DOI | MR

[18] Sławianowski J. J., Kovalchuk V., Sławianowska A., Gołubowska B., Martens A., Rożko E. E., Zawistowski Z. J., “Affine symmetry in mechanics of collective and internal modes. II. Quantum models”, Rep. Math. Phys., 55 (2005), 1–46, arXiv: 0802.3028 | DOI | MR