@article{SIGMA_2010_6_a3,
author = {V. V. Kudryashov and Yu. A. Kurochkin and E. M. Ovsiyuk and V. M. Red'kov},
title = {Classical {Particle} in {Presence} of {Magnetic} {Field,} {Hyperbolic} {Lobachevsky} and {Spherical} {Riemann} {Models}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a3/}
}
TY - JOUR AU - V. V. Kudryashov AU - Yu. A. Kurochkin AU - E. M. Ovsiyuk AU - V. M. Red'kov TI - Classical Particle in Presence of Magnetic Field, Hyperbolic Lobachevsky and Spherical Riemann Models JO - Symmetry, integrability and geometry: methods and applications PY - 2010 VL - 6 UR - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a3/ LA - en ID - SIGMA_2010_6_a3 ER -
%0 Journal Article %A V. V. Kudryashov %A Yu. A. Kurochkin %A E. M. Ovsiyuk %A V. M. Red'kov %T Classical Particle in Presence of Magnetic Field, Hyperbolic Lobachevsky and Spherical Riemann Models %J Symmetry, integrability and geometry: methods and applications %D 2010 %V 6 %U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a3/ %G en %F SIGMA_2010_6_a3
V. V. Kudryashov; Yu. A. Kurochkin; E. M. Ovsiyuk; V. M. Red'kov. Classical Particle in Presence of Magnetic Field, Hyperbolic Lobachevsky and Spherical Riemann Models. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a3/
[1] Avron J. E., Pnueli A., “Landau Hamiltonians on symmetric spaces”, Ideas and Methods in Mathematical Analysis, Stochastics, and Applications (Oslo, 1988), Cambridge Univ. Press, Cambridge, 1992, 96–117 | MR | Zbl
[2] Bogush A. A., Red'kov V. M., Krylov G. G., “Quantum particle in uniform magnetic field on the background of Lobachevsky space”, Dokl. Nats. Akad. Nauk Belarusi, 53 (2009), 45–51
[3] Bogush A. A., Red'kov V. M., Krylov G. G., “Quantum particle in uniform magnetic field on the background of spherical Riemann space”, Vestsi Nats. Akad. Navuk Belarusi Ser. Fiz.-Mat. Navuk, 2 (2009), 57–63 | MR
[4] Bogush A. A., Red'kov V. M., Krylov G. G., “Schrödinger particle in magnetic and electric fields in Lobachevsky and Riemann spaces”, Nonlinear Phenom. Complex Syst., 11 (2008), 403–416 | MR
[5] Cappelli A., Dunne G. V., Trugenberger C. A., Zemba G. R., “Conformal symmetry and universal properties of quantum Hall states”, Nuclear Phys. B, 398 (1993), 531–567 ; hep-th/9211071 | DOI | MR
[6] Cappelli A., Trugenberger C. A., Zemba G. R., “Infinite symmetry in the quantum Hall effect”, Nuclear Phys. B, 396 (1993), 465–490 ; hep-th/9206027 | DOI | MR
[7] Cariñena J. F., Rañada M. F., Santander M., “Central potentials on spaces of constant curvature: the Kepler problem on the two-dimensional sphere $S^2$ and the hyperbolic plane $H^2$”, J. Math. Phys., 46 (2005), 052702, 25 pp., ages ; math-ph/0504016 | DOI | MR | Zbl
[8] Drukker N., Fiol B., Simón J., “Gödel-type universes and the Landau problem”, J. Cosmol. Astropart. Phys., 2004:10 (2004), 012, 20 pp., ages ; hep-th/0309199 | DOI | MR
[9] Dunne G. V., “Hilbert space for charged particles in perpendicular magnetic fields”, Ann. Physics, 215 (1992), 233–263 | DOI | MR | Zbl
[10] Gadella M., Negro J., Pronko G. P., Santander M., “Classical and quantum integrability in 3D system”, J. Phys. A: Math. Theor., 41 (2008), 304030, 15 pp., ages ; arXiv:0711.4915 | DOI | MR | Zbl
[11] Herranz J., Ballesteros A., “Superintegrability on three-dimensional Riemannian and relativistic spaces of constant curvature”, SIGMA, 2 (2006), 010, 22 pp., ages ; math-ph/0512084 | MR | Zbl
[12] Klauder J. R., Onofri E., “Landau levels and geometric quantization”, Internat. J. Modern Phys. A, 4 (1989), 3939–3949 | DOI | MR
[13] Kudryashov V. V., Kurochkin Yu.A., Ovsiyuk E.M., Red'kov V.M., “Motion caused by magnetic field in Lobachevsky space”, Proceedings of the 1st Zeldovich meeting “The Sun, the Stars, the Universe and General Relativity” (Minsk, April 20–23, 2009), eds. R. Ruffini and G. Vereshchagin (to appear)
[14] Landau L. D., “Diamagnetismus der Metalle”, Z. f. Physik, 64 (1930), 629–637 | DOI | Zbl
[15] Landau L. D., Lifshitz E. M., Theory of field, Nauka, Moscow, 1973
[16] Landau L. D., Lifshitz E. M., Quantum mechanics, nonrelativistic theory, Nauka, Moscow, 1974 | MR
[17] Negro J., del Olmo M. A., Rodríguez-Marco A., “Landau quantum systems: an approach based on symmetry”, J. Phys. A: Math. Gen., 35 (2002), 2283–2307 ; quant-ph/0110152 | DOI | MR | Zbl
[18] Olevsky M. N., “Three-orthogonal coordinate systems in spaces of constant curvature in which equation $\Delta_2u+\lambda u=0$ permits the full separation of variables”, Mat. Sb., 27(69):3 (1950), 379–426
[19] Onofri E., “Landau levels on a torus”, Internat. J. Theoret. Phys., 40 (2001), 537–549 ; quant-ph/0007055 | DOI | Zbl