@article{SIGMA_2010_6_a29,
author = {Irina A. Melnik and Andrey E. Mironov},
title = {Baker{\textendash}Akhiezer {Modules} on {Rational} {Varieties}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a29/}
}
Irina A. Melnik; Andrey E. Mironov. Baker–Akhiezer Modules on Rational Varieties. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a29/
[1] Nakayashiki A., “Structure of Baker–Akhiezer modules of principally polarized Abelian varieties, commuting partial differential operators and associated integrable systems”, Duke Math. J., 62 (1991), 315–358 | DOI | MR | Zbl
[2] Nakayashiki A., “Commuting partial differential operators and vector bundles over Abelian varieties”, Amer. J. Math., 116 (1994), 65–100 | DOI | MR | Zbl
[3] Mironov A. E., “Commutative rings of differential operators corresponding to multidimensional algebraic varieties”, Siberian Math. J., 43 (2002), 888–898, arXiv: math-ph/0211006 | DOI | MR | Zbl
[4] Rothstein M., “Sheaves with connection on Abelian varieties”, Duke Math. J., 84 (1996), 565–598, arXiv: alg-geom/9602023 | DOI | MR | Zbl
[5] Rothstein M., “Dynamics of the Krichever construction in several variables”, J. Reine Angew. Math., 572 (2004), 111–138, arXiv: math.AG/0201066 | DOI | MR | Zbl
[6] Previato E., “Multivariable Burchnall–Chaundy theory”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 336 (2008), 1155–1177 | DOI | MR