@article{SIGMA_2010_6_a28,
author = {David Karakhanyan and Roland Kirschner},
title = {Jordan{\textendash}Schwinger {Representations} and {Factorised} {Yang{\textendash}Baxter} {Operators}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a28/}
}
TY - JOUR AU - David Karakhanyan AU - Roland Kirschner TI - Jordan–Schwinger Representations and Factorised Yang–Baxter Operators JO - Symmetry, integrability and geometry: methods and applications PY - 2010 VL - 6 UR - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a28/ LA - en ID - SIGMA_2010_6_a28 ER -
David Karakhanyan; Roland Kirschner. Jordan–Schwinger Representations and Factorised Yang–Baxter Operators. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a28/
[1] Biedenharn L. C., Lohe M. A., “An extension of the Borel–Weil construction to the quantum group $U_q(n)$”, Comm. Math. Phys., 146 (1992), 483–504 ; Biedenharn L. C., Lohe M. A., Quantum group symmetry and $q$-tensor algebras, World Scientific Publishing Co., Inc., River Edge, NJ, 1995 | DOI | MR | Zbl | MR
[2] Gel'fand I. M., Naimark M. A., “Unitary representations of the classical groups”, Trudy Math. Inst. Steklov., 36, Izdat. Nauk SSSR, Moscow, Leningrad, 1950, 3–288 ; German transl: Akademie Verlag, Berlin, 1957 | MR | Zbl
[3] J.-P. Serre, “Representations lineaires et espaces homogenes Kahlerians des groupes de Lie compacts (d'apres Borel et Weil)”, Sem. Bourbaki, May 1954, Benjamin, New York, 1966, Expose 100 | Zbl
[4] Derkachov S. E., Karakhanyan D. R., Kirschner R., Valinevich P., “Iterative construction of $U_q(sl(n+1))$ representations and Lax matrix factorisation”, Lett. Math. Phys., 85 (2008), 221–234, arXiv: 0805.4724 | DOI | MR | Zbl
[5] Isaev A. P., “Quantum groups and Yang–Baxter equations”, Sov. J. Part. Nucl., 26 (1995), 501–525; see also the extended version: Preprint, MPI 2004-132, Bonn, 2004
[6] Khoroshkin S. M., Tolstoy V. N., “Universal $R$-matrix for quantized (super)algebras”, Comm. Math. Phys., 141 (1991), 599–617 | DOI | MR | Zbl
[7] Date E., Jimbo M., Miki K., Miwa T., “Generalized chiral Potts model and minimal cyclic representations of $U_q(\widehat{gl}(n,\mathbf C))$”, Comm. Math. Phys., 137 (1991), 133–147 | DOI | MR | Zbl
[8] Bazhanov V. V., Kashaev R. M., Mangazeev V. V., Stroganov Yu. G., “$(Z_N\times)^{n-1}$ generalization of the chiral Potts model”, Comm. Math. Phys., 138 (1991), 393–408 | DOI | MR | Zbl
[9] Delius G. W., Gould M. D., Zhang Y. Z., “On the construction of trigonometric solutions of the Yang–Baxter equation”, Nuclear Phys. B, 432 (1994), 377–403, arXiv: hep-th/9405030 | DOI | MR
[10] Bazhanov V. V., Stroganov Yu. G., “Chiral Potts model as a descendant of the six-vertex model”, J. Statist. Phys., 59 (1990), 799–817 | DOI | MR | Zbl
[11] Hasegawa K., Yamada Y., “Algebraic derivation of the broken $Z_N$ symmetric model”, Phys. Lett. A, 146 (1990), 387–396 | DOI | MR
[12] Tarasov V. O., “Cyclic monodromy matrices for the $R$-matrix of the six-vertex model and the chiral Potts model with fixed spin boundary conditions”, Infinite Analysis, Part A, B (Kyoto, 1991), Adv. Ser. Math. Phys., 16, World Sci. Publ., River Edge, NJ, 1992, 963–975 | MR
[13] Belavin A. A., Odesskii A. V., Usmanov R. A., “New relations in the algebra of the Baxter $Q$-operators”, Theoret. and Math. Phys., 130 (2002), 323–350, arXiv: hep-th/0110126 | DOI | MR | Zbl
[14] Kashaev R. M., Mangazeev V. V., Nakanishi T., “Yang–Baxter equation for the $sl(n)$ chiral Potts model”, Nuclear Phys. B, 362 (1991), 563–582 | DOI | MR
[15] Tarasov V., “Cyclic monodromy matrices for $sl(n)$ trigonometric $R$-matrices”, Comm. Math. Phys., 158 (1993), 459–483, arXiv: hep-th/9211105 | DOI | MR | Zbl
[16] Lipatov L. N., “High energy asymptotics of multi-color QCD and exactly solvable lattice models”, JETP Lett., 59 (1994), 596–599, arXiv: hep-th/9311037
[17] Braun V. M., Derkachov S. E., Manashov A. N., “Integrability of three-particle evolution equations in QCD”, Phys. Rev. Lett., 81 (1998), 2020–2023, arXiv: hep-ph/9805225 | DOI
[18] Karakhanyan D., Kirschner R., Mirumyan M., “Universal $R$ operator with deformed conformal symmetry”, Nuclear Phys. B, 636 (2002), 529–548, arXiv: nlin.SI/0111032 | DOI | MR | Zbl
[19] J. Math. Sci. (N.Y.), 151 (2008), 2880–2893, arXiv: math.QA/0507252 | DOI | MR
[20] Derkachov S., Karakhanyan D., Kirschner R., “Baxter $Q$-operators of the $XXZ$ chain and $R$-matrix factorization”, Nuclear Phys. B, 738 (2006), 368–390, arXiv: hep-th/0511024 | DOI | MR | Zbl
[21] Derkachov S., Karakhanyan D., Kirschner R., “Yang–Baxter $R$-operators and parameter permutations”, Nuclear Phys. B, 785 (2007), 263–285, arXiv: hep-th/0703076 | DOI | MR | Zbl
[22] Derkachov S. E., Manashov A. N., “$R$-matrix and Baxter $Q$-operators for the noncompact $\mathrm{SL}(N,C)$ invariant spin chain”, SIGMA, 2 (2006), 084, 20 pp., arXiv: nlin.SI/0612003 | DOI | MR | Zbl
[23] J. Math. Sci. (N.Y.), 151 (2008), 2848–2858 http://dx.doi.org/10.1007/s10958-008-9005-7 | DOI | MR
[24] Jordan P., “Der Zusammenhang der symmetrischen und linearen Gruppen und das Mehrkörperproblem”, Z. Phys., 94 (1935), 531–535 | DOI
[25] Schwinger J., Quantum mechanics of angular momentum. A collection of reprints and original papers, eds. L. C. Biedenharn and H. van Dam, Academic Press, New York, London, 1965 | MR
[26] Jimbo M., “A $q$-difference analog of $U(g)$ and the Yang–Baxter equation”, Lett. Math. Phys., 10 (1985), 63–69 ; Jimbo M., “A $q$-analogue of $U(gl(N+1))$, Hecke algebra, and the Yang–Baxter equation”, Lett. Math. Phys., 11 (1986), 247–252 | DOI | MR | Zbl | DOI | MR | Zbl
[27] Faddeev L. D., Kashaev R. M., “Quantum dilogarithm”, Modern Phys. Lett. A, 9 (1994), 427–434, arXiv: ; Kirillov A. N., “Dilogarithm identities”, Progr. Theor. Phys. Suppl., 118 (1995), 61–142 hep-th/9310070 | DOI | MR | Zbl | DOI | MR | Zbl