@article{SIGMA_2010_6_a27,
author = {Saburo Kakei and Jonathan J. C. Nimmo and Ralph Willox},
title = {Yang{\textendash}Baxter {Maps} from the {Discrete} {BKP} {Equation}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a27/}
}
Saburo Kakei; Jonathan J. C. Nimmo; Ralph Willox. Yang–Baxter Maps from the Discrete BKP Equation. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a27/
[1] Adler V. E., Bobenko A. I., Suris Yu B., “Classification of integrable equations on quad-graphs. The consistency approach”, Comm. Math. Phys., 233 (2003), 513–543, arXiv: nlin.SI/0202024 | DOI | MR | Zbl
[2] Date E., Jimbo M., Kashiwara M., Miwa T., “Transformation groups for soliton equations. Euclidean Lie algebras and reduction of the KP hierarchy”, Publ. Res. Inst. Math. Sci., 18 (1982), 1077–1110 | DOI | MR | Zbl
[3] Date E., Jimbo M., Miwa T., “Method for generating discrete soliton equations. II”, J. Phys. Soc. Japan, 51 (1982), 4125–4131 | DOI | MR
[4] Date E., Jimbo M., Miwa T., “Method for generating discrete soliton equations. V”, J. Phys. Soc. Japan, 52 (1983), 766–771 | DOI
[5] Etingof P., “Geometric crystals and set-theoretical solutions to the quantum Yang–Baxter equation”, Comm. Algebra, 31 (2003), 1961–1973, arXiv: math.QA/0112278 | DOI | MR | Zbl
[6] Hatayama G., Hikami K., Inoue R., Kuniba A., Takagi T., Tokihiro T., “The $A_M^{(1)}$ automata related to crystals of symmetric tensors”, J. Math. Phys., 42 (2001), 274–308, arXiv: math.QA/9912209 | DOI | MR | Zbl
[7] Hatayama G., Kuniba A., Takagi T., “Soliton cellular automata associated with crystal bases”, Nuclear Phys. B, 577 (2000), 619–645, arXiv: solv-int/9907020 | DOI | MR | Zbl
[8] Hirota R., “Nonlinear partial difference equations. I. A difference analogue of the Korteweg–de Vries equation”, J. Phys. Soc. Japan, 43 (1977), 1424–1433 | DOI | MR
[9] Hirota R., “Discrete analogue of a generalized Toda equation”, J. Phys. Soc. Japan, 50 (1981), 3785–3791 | DOI | MR
[10] Hirota R., “Ultradiscretization of the Sawada–Kotera equation”, Mathematics and Physics in Nonlinear Waves (November 6–8, 2008, Fukuoka, Japan), Reports of RIAM Symposium, 20ME-S7, Research Institute for Applied Mechanics, Kyushu University, 2009, 76–85 (in Japanese)
[11] Kakei S., Nimmo J. J. C., Willox R., “Yang–Baxter maps and the discrete KP hierarchy”, Glasg. Math. J., 51A (2009), 107–119 | DOI | MR | Zbl
[12] Maillet J. M., Nijhoff F. W., “Integrability for multidimensional lattice models”, Phys. Lett. B, 224 (1989), 389–396 | DOI | MR
[13] Miwa T., “On Hirota's difference equations”, Proc. Japan Acad. Ser. A Math. Sci., 58 (1982), 9–12 http://projecteuclid.org/getRecord?id=euclid.pja/1195516178 | DOI | MR | Zbl
[14] Nimmo J. J. C., “Darboux transformations and the discrete KP equation”, J. Phys. A: Math. Gen., 30 (1997), 8693–8704 | DOI | MR | Zbl
[15] Nimmo J. J. C., “Darboux transformations for discrete systems”, Chaos Solitons Fractals, 11 (2000), 115–120 | DOI | MR | Zbl
[16] Papageorgiou V. G., Suris Yu. B., Tongas A. G., Veselov A. P., On quadrirational Yang–Baxter maps, arXiv: 0911.2895
[17] Papageorgiou V. G., Tongas A. G., Veselov A. P., “Yang–Baxter maps and symmetries of integrable equations on quad-graphs”, J. Math. Phys., 47 (2006), 083502, 16 pp., arXiv: math.QA/0605206 | DOI | MR | Zbl
[18] Suris Yu. B., Veselov A. P., “Lax matrices for Yang–Baxter maps”, J. Nonlinear Math. Phys., 10, suppl. 2 (2003), 223–230, arXiv: math.QA/0304122 | DOI | MR
[19] Takagi T., “Soliton cellular automata”, in Combinatorial Aspect of Integrable Systems, MSJ Mem., 17, Math. Soc. Japan, Tokyo, 2007, 105–144 | MR | Zbl
[20] Takahashi D., Matsukidaira J., “Box and ball system with a carrier and ultradiscrete modified KdV equation”, J. Phys. A: Math. Gen., 30 (1997), L733–L739 | DOI | MR | Zbl
[21] Takahashi D., Satsuma J., “A soliton cellular automaton”, J. Phys. Soc. Japan, 59 (1990), 3514–3519 | DOI | MR
[22] Tokihiro T., Takahashi D., Matsukidaira J., Satsuma J., “From soliton equations to integrable cellular automata through a limiting procedure”, Phys. Rev. Lett., 76 (1996), 3247–3250 | DOI
[23] Veselov A. P., “Yang–Baxter maps and integrable dynamics”, Phys. Lett. A, 314 (2003), 214–221, arXiv: math.QA/0205335 | DOI | MR | Zbl
[24] Veselov A. P., “Yang–Baxter maps: dynamical point of view”, Combinatorial Aspect of Integrable Systems, MSJ Mem., 17, Math. Soc. Japan, Tokyo, 2007, 145–167, arXiv: math.QA/0612814 | MR | Zbl
[25] Willox R., Tokihiro T., Satsuma J., “Darboux and binary Darboux transformations for the nonautonomous discrete KP equation”, J. Math. Phys., 38 (1997), 6455–6469 | DOI | MR | Zbl
[26] Willox R., Tokihiro T., Satsuma J., “Nonautonomous discrete integrable systems”, Chaos Solitons Fractals, 11 (2000), 121–135 | DOI | MR | Zbl