@article{SIGMA_2010_6_a26,
author = {Taichiro Takagi},
title = {Level {Set} {Structure} of an {Integrable} {Cellular} {Automaton}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a26/}
}
Taichiro Takagi. Level Set Structure of an Integrable Cellular Automaton. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a26/
[1] Arnol'd V. I., Mathematical methods of classical mechanics, Graduate Texts in Mathematics, 60, 2nd ed., Springer-Verlag, New York, 1989 | MR
[2] Yura F., Tokihiro T., “On a periodic soliton cellular automaton”, J. Phys. A: Math. Gen., 35 (2002), 3787–3801, arXiv: nlin.SI/0112041 | DOI | MR | Zbl
[3] Yoshihara D., Yura F., Tokihiro T., “Fundamental cycle of a periodic box-ball system”, J. Phys. A: Math. Gen., 36 (2003), 99–121, arXiv: nlin.SI/0208042 | DOI | MR | Zbl
[4] Iwao S., Tokihiro T., “Ultradiscretization of the theta function solution of pd Toda”, J. Phys. A: Math. Gen., 40 (2007), 12987–13021, arXiv: 0705.4013 | DOI | MR | Zbl
[5] Kuniba A., Takagi T., Takenouchi A., “Bethe ansatz and inverse scattering transform in a periodic box-ball system”, Nuclear Phys. B, 747 (2006), 354–397, arXiv: math.QA/0602481 | DOI | MR | Zbl
[6] Inoue R., Takenawa T., “Tropical spectral curves and integrable cellular automata”, Int. Math. Res. Not., 2008 (2008), Art ID. rnn019, 27 pp., arXiv: 0704.2471 | DOI | MR
[7] Kuniba A., Sakamoto R., “Bethe ansatz in a periodic box-ball system and ultradiscrete Riemann theta function”, J. Stat. Mech. Theory Exp., 2006:9 (2006), P09005, 12 pp., arXiv: math.QA/0606208 | DOI | MR
[8] Kuniba A., Nakanishi T., “The Bethe equation at $q=0$, the Möbius inversion formula, and weight multiplicities. I. The $\mathrm{sl}(2)$ case”, Physical Combinatorics (Kyoto, 1999), Progr. Math., 191, Birkhäuser Boston, Boston, MA, 2000, 185–216, arXiv: math.QA/9909056 | MR | Zbl
[9] J. Soviet Math., 41 (1988), 916–924 | DOI | MR | Zbl | Zbl
[10] J. Soviet Math., 41 (1988), 925–955 | DOI | MR | Zbl | Zbl
[11] Kashiwara M., “Crystal bases of modified quantized universal enveloping algebra”, Duke Math. J., 73 (1994), 383–413 | DOI | MR | Zbl
[12] Ablowitz M. J., Segur H., Solitons and the inverse scattering transform, SIAM Studies in Applied Mathematics, 4, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa, 1981 | MR | Zbl
[13] Kuniba A., Takagi T., “Bethe ansatz, inverse scattering transform and tropical Riemann theta function in a periodic soliton cellular automaton for $A^{(1)}_n$”, SIGMA, 6 (2010), 013, 52 pp., arXiv: 0909.3759 | DOI
[14] Stanley R. P., Enumerative Combinatorics, v. 1, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, Cambridge, 1997 | MR | Zbl
[15] Takagi T., “Soliton cellular automata”, Combinatorial Aspect of Integrable Systems, MSJ Mem., 17, Math. Soc. Japan, Tokyo, 2007, 105–144 | MR | Zbl