Level Set Structure of an Integrable Cellular Automaton
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Based on a group theoretical setting a sort of discrete dynamical system is constructed and applied to a combinatorial dynamical system defined on the set of certain Bethe ansatz related objects known as the rigged configurations. This system is then used to study a one-dimensional periodic cellular automaton related to discrete Toda lattice. It is shown for the first time that the level set of this cellular automaton is decomposed into connected components and every such component is a torus.
Keywords: periodic box-ball system; rigged configuration; invariant torus.
@article{SIGMA_2010_6_a26,
     author = {Taichiro Takagi},
     title = {Level {Set} {Structure} of an {Integrable} {Cellular} {Automaton}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a26/}
}
TY  - JOUR
AU  - Taichiro Takagi
TI  - Level Set Structure of an Integrable Cellular Automaton
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a26/
LA  - en
ID  - SIGMA_2010_6_a26
ER  - 
%0 Journal Article
%A Taichiro Takagi
%T Level Set Structure of an Integrable Cellular Automaton
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a26/
%G en
%F SIGMA_2010_6_a26
Taichiro Takagi. Level Set Structure of an Integrable Cellular Automaton. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a26/

[1] Arnol'd V. I., Mathematical methods of classical mechanics, Graduate Texts in Mathematics, 60, 2nd ed., Springer-Verlag, New York, 1989 | MR

[2] Yura F., Tokihiro T., “On a periodic soliton cellular automaton”, J. Phys. A: Math. Gen., 35 (2002), 3787–3801, arXiv: nlin.SI/0112041 | DOI | MR | Zbl

[3] Yoshihara D., Yura F., Tokihiro T., “Fundamental cycle of a periodic box-ball system”, J. Phys. A: Math. Gen., 36 (2003), 99–121, arXiv: nlin.SI/0208042 | DOI | MR | Zbl

[4] Iwao S., Tokihiro T., “Ultradiscretization of the theta function solution of pd Toda”, J. Phys. A: Math. Gen., 40 (2007), 12987–13021, arXiv: 0705.4013 | DOI | MR | Zbl

[5] Kuniba A., Takagi T., Takenouchi A., “Bethe ansatz and inverse scattering transform in a periodic box-ball system”, Nuclear Phys. B, 747 (2006), 354–397, arXiv: math.QA/0602481 | DOI | MR | Zbl

[6] Inoue R., Takenawa T., “Tropical spectral curves and integrable cellular automata”, Int. Math. Res. Not., 2008 (2008), Art ID. rnn019, 27 pp., arXiv: 0704.2471 | DOI | MR

[7] Kuniba A., Sakamoto R., “Bethe ansatz in a periodic box-ball system and ultradiscrete Riemann theta function”, J. Stat. Mech. Theory Exp., 2006:9 (2006), P09005, 12 pp., arXiv: math.QA/0606208 | DOI | MR

[8] Kuniba A., Nakanishi T., “The Bethe equation at $q=0$, the Möbius inversion formula, and weight multiplicities. I. The $\mathrm{sl}(2)$ case”, Physical Combinatorics (Kyoto, 1999), Progr. Math., 191, Birkhäuser Boston, Boston, MA, 2000, 185–216, arXiv: math.QA/9909056 | MR | Zbl

[9] J. Soviet Math., 41 (1988), 916–924 | DOI | MR | Zbl | Zbl

[10] J. Soviet Math., 41 (1988), 925–955 | DOI | MR | Zbl | Zbl

[11] Kashiwara M., “Crystal bases of modified quantized universal enveloping algebra”, Duke Math. J., 73 (1994), 383–413 | DOI | MR | Zbl

[12] Ablowitz M. J., Segur H., Solitons and the inverse scattering transform, SIAM Studies in Applied Mathematics, 4, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa, 1981 | MR | Zbl

[13] Kuniba A., Takagi T., “Bethe ansatz, inverse scattering transform and tropical Riemann theta function in a periodic soliton cellular automaton for $A^{(1)}_n$”, SIGMA, 6 (2010), 013, 52 pp., arXiv: 0909.3759 | DOI

[14] Stanley R. P., Enumerative Combinatorics, v. 1, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, Cambridge, 1997 | MR | Zbl

[15] Takagi T., “Soliton cellular automata”, Combinatorial Aspect of Integrable Systems, MSJ Mem., 17, Math. Soc. Japan, Tokyo, 2007, 105–144 | MR | Zbl