@article{SIGMA_2010_6_a25,
author = {Eric Cagnache and Jean-Christophe Wallet},
title = {Spectral {Distances:} {Results} for {Moyal} {Plane} and {Noncommutative} {Torus}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a25/}
}
TY - JOUR AU - Eric Cagnache AU - Jean-Christophe Wallet TI - Spectral Distances: Results for Moyal Plane and Noncommutative Torus JO - Symmetry, integrability and geometry: methods and applications PY - 2010 VL - 6 UR - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a25/ LA - en ID - SIGMA_2010_6_a25 ER -
Eric Cagnache; Jean-Christophe Wallet. Spectral Distances: Results for Moyal Plane and Noncommutative Torus. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a25/
[1] Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994 available at http://www.alainconnes.org/downloads.html | MR | Zbl
[2] Connes A., Marcolli M., A walk in the noncommutative garden, arXiv: math.QA/0601054
[3] Landi G., An introduction to noncommutative spaces and their geometries, Lecture Notes in Physics, New Series m: Monographs, 51, Springer-Verlag, Berlin, 1997 | MR
[4] Gracia-Bondía J. M., Várilly J. C., Figueroa H., Elements of noncommutative geometry, Birkhaüser Advanced Texts: Basler Lehrbücher, Birkhaüser Boston, Inc., Boston, MA, 2001 | MR | Zbl
[5] Connes A., “Compact metric spaces, Fredholm modules, and hyperfiniteness”, Ergodic Theory Dynam. Systems, 9 (1989), 207–220 | DOI | MR | Zbl
[6] Connes A., “Gravity coupled with matter and the foundation of noncommutative geometry”, Comm. Math. Phys., 182 (1996), 155–176, arXiv: hep-th/9603053 | DOI | MR | Zbl
[7] d'Andrea F., Martinetti P., A view on transport theory from noncommutative geometry, arXiv: 0906.1267
[8] Rieffel M. A., “Metrics on state spaces”, Doc. Math., 4 (1999), 559–600, arXiv: math.OA/9906151 | MR | Zbl
[9] Dimakis A., Müller-Hoissen F., Striker T., “Non-commutative differential calculus and lattice gauge theories”, J. Phys. A: Math. Gen., 26 (1993), 1927–1949 | DOI | MR | Zbl
[10] Dimakis A., Müller-Hoissen F., “Conne's distance function on one dimensional lattices”, Internat. J. Theoret. Phys., 37 (1998), 907–913, arXiv: q-alg/9707016 | DOI | MR | Zbl
[11] Bimonte G., Lizzi F., Sparano G., “Distances on a lattice from non-commutative geometry”, Phys. Lett. B, 341 (1994), 139–146, arXiv: hep-lat/9404007 | DOI | MR
[12] Iochum B., Krajewski T., Martinetti P., “Distances in finite spaces from noncommutative geometry”, J. Geom. Phys., 37 (2001), 100–125, arXiv: hep-th/9912217 | DOI | MR | Zbl
[13] Martinetti P., Wulkenhaar R., “Discrete Kaluza–Klein from scalar fluctuations in noncommutative geometry”, J. Math. Phys., 43 (2002), 182–204, arXiv: hep-th/0104108 | DOI | MR | Zbl
[14] Martinetti P., “Carnot–Carathéodory metric and gauge fluctuation in noncommutative geometry”, Comm. Math. Phys., 265 (2006), 585–616, arXiv: hep-th/0506147 | DOI | MR | Zbl
[15] Martinetti P., “Spectral distance on the circle”, J. Funct. Anal., 255 (2008), 1575–1612, arXiv: math.OA/0703586 | DOI | MR | Zbl
[16] Gracia-Bondía J.M., Várilly J. C., “Algebras of distributions suitable for phase-space quantum mechanics. I”, J. Math. Phys., 29 (1988), 869–879 | DOI | MR | Zbl
[17] Várilly J. C., Gracia-Bondía J. M., “Algebras of distributions suitable for phase-space quantum mechanics. II. Topologies on the Moyal algebra”, J. Math. Phys., 29 (1988), 880–887 | DOI | MR | Zbl
[18] Gayral V., Gracia-Bondía J. M., Iochum B., Schücker T., Várilly J. C., “Moyal planes are spectral triples”, Comm. Math. Phys., 246 (2004), 569–623, arXiv: hep-th/0307241 | DOI | MR | Zbl
[19] Gayral V., Iochum B., “The spectral action for Moyal planes”, J. Math. Phys., 46 (2005), 043503, 17 pp., arXiv: hep-th/0402147 | DOI | MR | Zbl
[20] Gayral V., “The action functional for Moyal planes”, Lett. Math. Phys., 65 (2003), 147–157, arXiv: hep-th/0307220 | DOI | MR | Zbl
[21] Rieffel M. A., “Compact quantum metric spaces”, Operator Algebras, Quantization, and Noncommutative Geometry, Contemp. Math., 365, Amer. Math. Soc., Providence, RI, 2004, 315–330, arXiv: math.OA/0308207 | MR | Zbl
[22] Cagnache E., d'Andrea F., Martinetti P., Wallet J.-C., The spectral distance on the Moyal plane, arXiv: 0912.0906
[23] Cagnache E., Masson T., Wallet J.-C., “Noncommutative Yang–Mills–Higgs actions from derivation based differential calculus”, J. Noncommut. Geom. (to appear) , arXiv: 0804.3061
[24] de Goursac A., Masson T., Wallet J.-C., Noncommutative $\varepsilon$-graded connections and application to Moyal space, arXiv: 0811.3567
[25] Wallet J.-C., “Derivations of the Moyal algebra and noncommutative gauge theories”, SIGMA, 5 (2009), 013, 25 pp., arXiv: 0811.3850 | DOI | MR | Zbl
[26] Schwartz L., Théorie des distributions, Hermann, Paris, 1966 | MR
[27] Connes A., “$C^*$-algèbres et géométrie différentielle”, C. R. Acad. Sci. Paris Sér. A, 290 (1980), 599–604 | MR | Zbl
[28] Rieffel M. A., “$C^*$-algebras associated with irrational rotations ”, Pacific J. Math., 93 (1981), 415–429 http://projecteuclid.org/euclid.pjm/1102736269 | MR | Zbl