@article{SIGMA_2010_6_a23,
author = {Tigran Hakobyan},
title = {Ordering of {Energy} {Levels} for {Extended} $\mathrm{SU}(N)$ {Hubbard} {Chain}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a23/}
}
Tigran Hakobyan. Ordering of Energy Levels for Extended $\mathrm{SU}(N)$ Hubbard Chain. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a23/
[1] Marshall W., “Antiferromagnetism”, Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci., 232 (1955), 48–68 | DOI | Zbl
[2] Lieb E. H., Schultz T. D., Mattis D. C., “Two soluble models of an antiferromagnetic chain”, Ann. Physics, 16 (1961), 407–466 | DOI | MR | Zbl
[3] Lieb E. H., Mattis D., “Ordering energy levels of interacting spin systems”, J. Math. Phys., 3 (1962), 749–751 | DOI | Zbl
[4] Lieb E. H., “Two theorems on the Hubbard model”, Phys. Rev. Lett., 62 (1989), 1201–1204 | DOI | MR
[5] Lieb E. H., Mattis D., “Theory of ferromagnetism and the ordering of electronic energy levels”, Phys. Rev., 125 (1962), 164–172 ; Lieb E. H., “The Hubbard model: some rigorous results and open problems”, Proceedings of XIth International Congress of Mathematical Physics (Paris, 1994), ed. D. Iagolnitzer, International Press, 1995, 392–412, arXiv: cond-mat/9311033 | DOI | Zbl | MR | Zbl
[6] Munro R. G., “Extension of a theorem on antiferromagnetism to include biquadratic exchange”, Phys. Rev. B, 13 (1976), 4875–4876 ; Parkinson J. B., “The eigenstates of short chains of spin-1 atoms with Heisenberg and biquadratic exchange”, J. Phys. C: Solid State Phys., 10 (1977), 1735–1739 | DOI | DOI
[7] Xiang T., d'Ambrumenil N., “Energy-level ordering in the one-dimensional $t-J$ model: a rigorous result”, Phys. Rev. B, 46 (1992), 599–602 | DOI
[8] Xiang T., d'Ambrumenil N., “Theorem on the one-dimensional interacting-electron system on a lattice”, Phys. Rev. B, 46 (1992), 11179–11181 | DOI
[9] Shen S.-Q., “Strongly correlated electron systems: spin-reflection positivity and some rigorous results”, Internat. J. Modern Phys. B, 12 (1998), 709–779 | DOI
[10] Hakobyan T., “The ordering of energy levels for $su(n)$ symmetric antiferromagnetic chains”, Nuclear Phys. B, 699 (2004), 575–594, arXiv: cond-mat/0403587 | DOI | MR | Zbl
[11] Hakobyan T., “Energy-level ordering and ground-state quantum numbers for a frustrated two-leg spin-1/2 ladder”, Phys. Rev. B, 75 (2007), 214421, 14 pp., arXiv: ; Hakobyan T., “Antiferromagnetic ordering of energy levels for a spin ladder with four-spin cyclic exchange: generalization of the Lieb–Mattis theorem”, Phys. Rev. B, 78 (2008), 012407, 4 pp., arXiv: cond-mat/07021480802.2392 | DOI | DOI
[12] Nachtergaele B., Spitzer W., Starr Sh., “Ferromagnetic ordering of energy levels”, J. Statist. Phys., 116 (2004), 719–738, arXiv: ; Nachtergaele B., Starr Sh., “Ferromagnetic Lieb–Mattis theorem”, Phys. Rev. Lett., 94 (2005), 057206, 4 pp., arXiv: math-ph/0308006math-ph/0408020 | DOI | MR | Zbl | DOI
[13] Greiter M., Rachel S., “Valence bond solids for $SU(n)$ spin chains: exact models, spinon confinement, and the Haldane gap”, Phys. Rev. B, 75 (2007), 184441, 25 pp., arXiv: cond-mat/0702443 | DOI
[14] Rachel S., Thomale R., Führinger M., Schmitteckert P., Greiter M., “Spinon confinement and the Haldane gap in $SU(n)$ spin chains”, Phys. Rev. B, 80 (2009), 180420(R), 4 pp., arXiv: 0904.3882 | DOI
[15] Aguado M., Asorey M., Ercolessi E., Ortolani F., Pasini S., “Density-matrix renormalization-group simulation of the $SU(3)$ antiferromagnetic Heisenberg model”, Phys. Rev. B, 79 (2009), 012408, 4 pp., arXiv: 0801.3565 | DOI
[16] Honerkam C., Hofstetter W., “Ultracold fermions and the $\mathrm{SU}(N)$ Hubbard model”, Phys. Rev. Lett., 92 (2004), 170403, 4 pp., arXiv: cond-mat/0309374 | DOI
[17] Gorshkov A. V., Hermele M., Gurarie V., Xu C., Julienne P. S., Ye J., Zoller P., Demler E., Lukin M. D., Rey A. M., “Two-orbital $SU(N)$ magnetism with ultracold alkaline-earth atoms”, Nature Phys. (to appear) , arXiv: 0905.2610 | DOI
[18] Haldane F. D. M., “Continuum dynamics of the 1-D Heisenberg antiferromagnet: identification with the $O(3)$ nonlinear sigma model”, Phys. Lett. A, 93 (1983), 464–468 | DOI | MR
[19] Marston J. B., Affleck I., “Large-$n$ limit of the Hubbard–Heisenberg model”, Phys. Rev. B, 39 (1989), 11538–11558 | DOI | MR
[20] Li Y.-Q., Tian G.-S., Ma M., Lin H.-Q., “Ground state and excitations of a four-component fermion model”, Phys. Rev. B, 70 (2004), 233105, 4 pp., arXiv: cond-mat/0407601 | DOI | Zbl
[21] Affleck I., Lieb E. H., “A proof of part of Haldane's conjecture on spin chains”, Lett. Math. Phys., 12 (1986), 57–69 | DOI | MR
[22] Angelucci A., Sorella S., “Some exact results for the multicomponent $t-J$ model”, Phys. Rev. B, 54 (1996), R12657–R12660, arXiv: cond-mat/9609107 | DOI
[23] Li Y. Q., “Rigorous results for a hierarchy of generalized Heisenberg models”, Phys. Rev. Lett., 87 (2001), 127208, 4 pp., arXiv: cond-mat/0201060 | DOI
[24] Lancaster P., Theory of matrices, Academic Press, New York, London, 1969 | MR | Zbl
[25] Lieb E. H., Schupp P., “Ground state properties of a fully frustrated quantum spin system”, Phys. Rev. Lett., 83 (1999), 5362–5365, arXiv: ; Lieb E. H., Schupp P., “Singlets and reflection symmetric spin systems”, Phys. A, 279 (2000), 378–385, arXiv: math-ph/9908019math-ph/9910037 | DOI | DOI | MR
[26] Sutherland B., “Model for a multicomponent quantum system”, Phys. Rev. B, 12 (1975), 3795–3805 | DOI
[27] Hamermesh M., Group theory and its application to physical problems, Dover, New York, 1989
[28] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford University Press, New York, 1979 | MR
[29] Mattis D., The theory of magnetism made simple, World Scientific, 2004
[30] Landau L. D., Lifshitz L. M., Quantum mechanics non-relativistic theory, Elsevier Science, 1977