Epsilon Systems on Geometric Crystals of type $A_n$
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce an epsilon system on a geometric crystal of type $A_n$, which is a certain set of rational functions with some nice properties. We shall show that it is equipped with a product structure and that it is invariant under the action of tropical R maps.
Keywords: geometric crystal; epsilon system; tropical R map.
@article{SIGMA_2010_6_a22,
     author = {Toshiki Nakashima},
     title = {Epsilon {Systems} on {Geometric} {Crystals} of type $A_n$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a22/}
}
TY  - JOUR
AU  - Toshiki Nakashima
TI  - Epsilon Systems on Geometric Crystals of type $A_n$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a22/
LA  - en
ID  - SIGMA_2010_6_a22
ER  - 
%0 Journal Article
%A Toshiki Nakashima
%T Epsilon Systems on Geometric Crystals of type $A_n$
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a22/
%G en
%F SIGMA_2010_6_a22
Toshiki Nakashima. Epsilon Systems on Geometric Crystals of type $A_n$. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a22/

[1] Berenstein A., Kazhdan D., “Geometric and unipotent crystals”, GAFA 2000 (Tel Aviv, 1999), Geom. Funct. Anal., 2000, 188–236, arXiv: math.QA/9912105 | MR | Zbl

[2] Kashiwara M., Nakashima T., Okado M., “Affine geometric crystals and limit of perfect crystals”, Trans. Amer. Math. Soc., 360 (2008), 3645–3686, arXiv: math.QA/0512657 | DOI | MR | Zbl

[3] Kashiwara M., Nakashima T., Okado M., “Tropical R maps and affine geometric crystals”, Represent. Theory (to appear) , arXiv: 0808.2411

[4] Kuniba A., Okado M., Takagi T., Yamada Y., “Geometric crystals and tropical $R$ for $D^{(1)}_n$”, Int. Math. Res. Not., 2003:48 (2003), 2565–2620, arXiv: math.QA/0208239 | DOI | MR | Zbl

[5] Kac V. G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990 | MR

[6] Kac V. G., Peterson D. H., “Defining relations of certain infinite-dimensional groups”, Arithmetic and Geometry, Progress in Mathematics, 36, eds. M. Artin and J. Tate, Birkhäuser Boston, Boston, MA, 1983, 141–166 | MR

[7] Peterson D. H., Kac V. G., “Infinite flag varieties and conjugacy theorems”, Proc. Nat. Acad. Sci. USA, 80 (1983), 1778–1782 | DOI | MR | Zbl

[8] Kumar S., Kac–Moody groups, their flag varieties and representation theory, Progress in Mathematics, 204, Birkhäuser Boston, Boston, MA, 2002 | MR | Zbl

[9] Nakashima T., “Geometric crystals on Schubert varieties”, J. Geom. Phys., 53 (2005), 197–225, arXiv: math.QA/0303087 | DOI | MR | Zbl

[10] Nakashima T., “Geometric crystals on unipotent groups and generalized Young tableaux”, J. Algebra, 293 (2005), 65–88, arXiv: math.QA/0403234 | DOI | MR | Zbl

[11] Nakashima T., “Affine geometric crystal of type $G^{(1)}_2$”, Lie Algebras, Vertex Operator Algebras and Their Applications, Contemp. Math., 442, Amer. Math. Soc., Providence, RI, 2007, 179–192, arXiv: math.QA/0612858 | MR | Zbl

[12] Nakashima T., “Universal tropical R map of $\mathfrak{sl}_2$ and prehomogeneous geometric crystals”, New Trends in Combinatorial Representation Theory, RIMS Kôkyûroku Bessatsu, B11, Res. Inst. Math. Sci. (RIMS), Kyoto, 2009, 101–116 | MR