@article{SIGMA_2010_6_a22,
author = {Toshiki Nakashima},
title = {Epsilon {Systems} on {Geometric} {Crystals} of type $A_n$},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2010},
volume = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a22/}
}
Toshiki Nakashima. Epsilon Systems on Geometric Crystals of type $A_n$. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a22/
[1] Berenstein A., Kazhdan D., “Geometric and unipotent crystals”, GAFA 2000 (Tel Aviv, 1999), Geom. Funct. Anal., 2000, 188–236, arXiv: math.QA/9912105 | MR | Zbl
[2] Kashiwara M., Nakashima T., Okado M., “Affine geometric crystals and limit of perfect crystals”, Trans. Amer. Math. Soc., 360 (2008), 3645–3686, arXiv: math.QA/0512657 | DOI | MR | Zbl
[3] Kashiwara M., Nakashima T., Okado M., “Tropical R maps and affine geometric crystals”, Represent. Theory (to appear) , arXiv: 0808.2411
[4] Kuniba A., Okado M., Takagi T., Yamada Y., “Geometric crystals and tropical $R$ for $D^{(1)}_n$”, Int. Math. Res. Not., 2003:48 (2003), 2565–2620, arXiv: math.QA/0208239 | DOI | MR | Zbl
[5] Kac V. G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990 | MR
[6] Kac V. G., Peterson D. H., “Defining relations of certain infinite-dimensional groups”, Arithmetic and Geometry, Progress in Mathematics, 36, eds. M. Artin and J. Tate, Birkhäuser Boston, Boston, MA, 1983, 141–166 | MR
[7] Peterson D. H., Kac V. G., “Infinite flag varieties and conjugacy theorems”, Proc. Nat. Acad. Sci. USA, 80 (1983), 1778–1782 | DOI | MR | Zbl
[8] Kumar S., Kac–Moody groups, their flag varieties and representation theory, Progress in Mathematics, 204, Birkhäuser Boston, Boston, MA, 2002 | MR | Zbl
[9] Nakashima T., “Geometric crystals on Schubert varieties”, J. Geom. Phys., 53 (2005), 197–225, arXiv: math.QA/0303087 | DOI | MR | Zbl
[10] Nakashima T., “Geometric crystals on unipotent groups and generalized Young tableaux”, J. Algebra, 293 (2005), 65–88, arXiv: math.QA/0403234 | DOI | MR | Zbl
[11] Nakashima T., “Affine geometric crystal of type $G^{(1)}_2$”, Lie Algebras, Vertex Operator Algebras and Their Applications, Contemp. Math., 442, Amer. Math. Soc., Providence, RI, 2007, 179–192, arXiv: math.QA/0612858 | MR | Zbl
[12] Nakashima T., “Universal tropical R map of $\mathfrak{sl}_2$ and prehomogeneous geometric crystals”, New Trends in Combinatorial Representation Theory, RIMS Kôkyûroku Bessatsu, B11, Res. Inst. Math. Sci. (RIMS), Kyoto, 2009, 101–116 | MR