Zero Action on Perfect Crystals for $U_q(G_2^{(1)})$
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The actions of 0-Kashiwara operators on the $U'_q(G_2^{(1)})$-crystal $B_l$ in [Yamane S., J. Algebra 210 (1998), 440–486] are made explicit by using a similarity technique from that of a $U'_q(D_4^{(3)})$-crystal. It is shown that $\{B_l\}_{l\ge1}$ forms a coherent family of perfect crystals.
Keywords: combinatorial representation theory; quantum affine algebra; crystal bases.
@article{SIGMA_2010_6_a21,
     author = {Kailash C. Misra and Mahathir Mohamad and Masato Okado},
     title = {Zero {Action} on {Perfect} {Crystals} for $U_q(G_2^{(1)})$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a21/}
}
TY  - JOUR
AU  - Kailash C. Misra
AU  - Mahathir Mohamad
AU  - Masato Okado
TI  - Zero Action on Perfect Crystals for $U_q(G_2^{(1)})$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a21/
LA  - en
ID  - SIGMA_2010_6_a21
ER  - 
%0 Journal Article
%A Kailash C. Misra
%A Mahathir Mohamad
%A Masato Okado
%T Zero Action on Perfect Crystals for $U_q(G_2^{(1)})$
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a21/
%G en
%F SIGMA_2010_6_a21
Kailash C. Misra; Mahathir Mohamad; Masato Okado. Zero Action on Perfect Crystals for $U_q(G_2^{(1)})$. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a21/

[1] Kang S.-J., Kashiwara M., Misra K. C., “Crystal bases of Verma modules for quantum affine Lie algebras”, Compositio Math., 92 (1994), 299–325 | MR | Zbl

[2] Kang S.-J., Misra K. C., “Crystal bases and tensor product decompositions of $U_q(G_2)$-module”, J. Algebra, 163 (1994), 675–691 | DOI | MR | Zbl

[3] Kang S.-J., Kashiwara M., Misra K. C., Miwa T., Nakashima T., Nakayashiki A., “Affine crystals and vertex models”, Infinite Analysis, Part A, B (Kyoto, 1991), Adv. Ser. Math. Phys., 16, World Sci. Publ., River Edge, NJ, 1992, 449–484 | MR

[4] Kashiwara M.,, “Crystal bases of modified quantized enveloping algebra”, Duke Math. J., 73 (1994), 383–413 | DOI | MR | Zbl

[5] Kashiwara M., “Similarity of crystal bases”, Lie Algebras and Their Representations (Seoul, 1995), Contemp. Math., 194, Amer. Math. Soc., Providence, RI, 1996, 177–186 | MR | Zbl

[6] Kashiwara M., Misra K. C., Okado M., Yamada D., “Perfect crystals for $U_q\big(D_4^{(3)}\big)$”, J. Algebra, 317 (2007), 392–423, arXiv: math.QA/0610873 | DOI | MR | Zbl

[7] Yamane S., “Perfect crystals of $U_q\big(G_2^{(1)}\big)$”, J. Algebra, 210 (1998), 440–486, arXiv: q-alg/9712012 | DOI | MR | Zbl