On the Existence of a Codimension 1 Completely Integrable Totally Geodesic Distribution on a Pseudo-Riemannian Heisenberg Group
Symmetry, integrability and geometry: methods and applications, Tome 6 (2010) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this note we prove that the Heisenberg group with a left-invariant pseudo-Riemannian metric admits a completely integrable totally geodesic distribution of codimension 1. This is on the contrary to the Riemannian case, as it was proved by T. Hangan.
Keywords: Heisenberg group; pseudo-Riemannian metrics; geodesics; codimension 1 distributions.
@article{SIGMA_2010_6_a20,
     author = {Wafaa Batat and Salima Rahmani},
     title = {On the {Existence} of {a~Codimension~1} {Completely} {Integrable} {Totally} {Geodesic} {Distribution} on {a~Pseudo-Riemannian} {Heisenberg} {Group}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2010},
     volume = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a20/}
}
TY  - JOUR
AU  - Wafaa Batat
AU  - Salima Rahmani
TI  - On the Existence of a Codimension 1 Completely Integrable Totally Geodesic Distribution on a Pseudo-Riemannian Heisenberg Group
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2010
VL  - 6
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a20/
LA  - en
ID  - SIGMA_2010_6_a20
ER  - 
%0 Journal Article
%A Wafaa Batat
%A Salima Rahmani
%T On the Existence of a Codimension 1 Completely Integrable Totally Geodesic Distribution on a Pseudo-Riemannian Heisenberg Group
%J Symmetry, integrability and geometry: methods and applications
%D 2010
%V 6
%U http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a20/
%G en
%F SIGMA_2010_6_a20
Wafaa Batat; Salima Rahmani. On the Existence of a Codimension 1 Completely Integrable Totally Geodesic Distribution on a Pseudo-Riemannian Heisenberg Group. Symmetry, integrability and geometry: methods and applications, Tome 6 (2010). http://geodesic.mathdoc.fr/item/SIGMA_2010_6_a20/

[1] Cordero L. A., Parker P. E., Pseudoriemannian 2-step nilpotent Lie groups, arXiv: math.DG/9905188

[2] Eberlein P., “Geometry of 2-step nilpotent groups with a left invariant metric”, Ann. Sci. École Norm. Sup. (4), 27 (1994), 611–660 | MR | Zbl

[3] Guediri M., “Sur la complétude des pseudo-métriques invariantes a gauche sur les groupes de Lie nilpotents”, Rend. Sem. Mat. Univ. Politec. Torino, 52 (1994), 371–376 | MR | Zbl

[4] Guediri M., “Lorentz geometry of 2-step nilpotent Lie groups”, Geom. Dedicata, 100 (2003), 11–51 | DOI | MR | Zbl

[5] Hangan T., “Au sujet des flots riemanniens sur le groupe nilpotent de Heisenberg”, Rend. Circ. Mat. Palermo (2), 35 (1986), 291–305 | DOI | MR | Zbl

[6] Hangan T., “Sur les distributions totalement géodésiques du groupe nilpotent riemannien $H_{2p+1}$”, Rend. Sem. Fac. Sci. Univ. Cagliari, 55 (1985), 31–47 | MR

[7] Jang C., Parker P. E., “Examples of conjugate loci of pseudoRiemannian 2-step nilpotent Lie groups with nondegenerate center”, Recent Advances in Riemannian and Lorentzian Geometries (Baltimore, MD, 2003), Contemp. Math., 337, eds. K. L. Duggal and R. Sharma, Amer. Math. Soc., Providence, RI, 2003, 91–108 | MR | Zbl

[8] Rahmani S., “Métriques de Lorentz sur les groupes de Lie unimodulaires, de dimension 3”, J. Geom. Phys., 9 (1992), 295–302 | DOI | MR | Zbl

[9] Rahmani N., Rahmani S., “Lorentzian geometry of the Heisenberg group”, Geom. Dedicata, 118 (2006), 133–140 | DOI | MR | Zbl